簡易檢索 / 詳目顯示

研究生: 洪華胤
Hung, Hua-Yin
論文名稱: 探討智能聊天機器人輔助學習對邏輯思考能力影響之研究
Exploring the impact of artificial intelligence chatbot-assisted learning on logical thinking abilities
指導教授: 陳明秀
Chen, Ming-Hsiu Mia
口試委員: 陳明秀
Chen, Ming-Hsiu Mia
邱富源
Chiu, Fu-Yuan
梁至中
Liang, Jyh-Chong
口試日期: 2024/06/26
學位類別: 碩士
Master
系所名稱: 圖文傳播學系
Department of Graphic Arts and Communications
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 65
中文關鍵詞: 智能聊天機器人Chatgpt人工智慧輔助學習邏輯思考批判性思維
英文關鍵詞: AI Chatbots, Chatgpt, AI-Assisted Learning, Logical Thinking, Critical Thinking
研究方法: 準實驗設計法問卷調查法
DOI URL: http://doi.org/10.6345/NTNU202401092
論文種類: 學術論文
相關次數: 點閱:318下載:27
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將聚焦於透過智能聊天機器人輔助學習對大學生邏輯思考能力的影響,研究對象為臺北市某大學選修「邏輯思考與應用」課程的300名學生,根據年級將學生分為兩組,低年級組(大一、大二)、高年級組(大三、大四),實驗課程為一學期共16週。本研究採用量化研究方法,研究工具包含「智能聊天機器人的認知感態度量表」以及「批判性思維能力量表」,並透過網路問卷進行數據收集,此外,學生在學期中使用智能聊天機器人完成與邏輯思考相關的作業,並實際應用這些工具。研究為準實驗設計,透過前測與後測問卷收集數據,分析不同年級學生在使用智能聊天機器人輔助學習過程中的影響。研究結果顯示,智能聊天機器人在提升學生邏輯思考能力方面效果顯著,但對批判性思維能力的提升則有限。研究結果為智能聊天機器人在教育領域的應用,提供了輔助學習對提升大學生邏輯思考能力的實證基礎。

    This study focuses on the impact of using intelligent chatbots to assist learning on college students' logical thinking abilities. The subjects of the study are 300 students enrolled in the "Logic and Application" course at a university in Taipei. The students are divided into two groups based on their year level: lower-year group and upper-year group. The experimental course lasts for 16 weeks, one semester. This study adopts a quantitative research method, utilizing tools such as the "Cognitive Attitude Scale towards Intelligent Chatbots" and the "Critical Thinking Ability Scale," and collects data through online questionnaires. Additionally, during the semester, students use intelligent chatbots to complete homework related to logical thinking, practically applying these tools. The study employs a quasi-experimental, collecting data through pre-tests and post-tests to analyze the impact of using intelligent chatbots on students from different year levels. The results show that intelligent chatbots significantly improve students' logical thinking abilities but have limited effect on enhancing critical thinking abilities. The findings provide empirical evidence for the application of intelligent chatbots in the educational field to enhance college students' logical thinking abilities.

    第壹章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的與問題 3 第三節 研究範圍與限制 4 第四節 名詞解釋 4 第貳章 文獻探討 6 第一節 人工智慧輔助學習 6 第二節 邏輯思考與批判性思維課程 10 第三節 智能聊天機器人輔助學習 14 第四節 整合型科技接收模式 18 第參章 研究方法 25 第一節 研究架構 25 第二節 實驗設計 25 第三節 研究對象 26 第四節 研究工具 26 第五節 實驗流程 31 第肆章 研究結果 33 第一節 驗證性因素分析 33 第二節 共變數分析 38 第伍章 結論與建議 43 第一節 討論 44 第二節 未來研究方向 48 參考文獻 49

    道田, 泰. (2001). 日常的題材に対する大学生の批判的思考態度と能力の学年差と専攻差. 教育心理学研究, 49(1), 41-49. https://doi.org/10.5926/jjep1953.49.1_41
    Abrami, P. C., Bernard, R. M., Borokhovski, E., Waddington, D. I., Wade, C. A., & Persson, T. (2015). Strategies for Teaching Students to Think Critically. Review of Educational Research, 85(2), 275-314. https://doi.org/10.3102/0034654314551063
    Alan Bensley, D., & Spero, R. A. (2014). Improving critical thinking skills and metacognitive monitoring through direct infusion. Thinking Skills and Creativity, 12, 55-68. https://doi.org/10.1016/j.tsc.2014.02.001
    An, X., Chai, C. S., Li, Y., Zhou, Y., Shen, X., Zheng, C., & Chen, M. (2022). Modeling English teachers’ behavioral intention to use artificial intelligence in middle schools. Education and Information Technologies, 28(5), 5187-5208. https://doi.org/10.1007/s10639-022-11286-z
    An, X., Chai, C. S., Li, Y., Zhou, Y., & Yang, B. (2023). Modeling students’ perceptions of artificial intelligence assisted language learning. Computer Assisted Language Learning, 1-22. https://doi.org/10.1080/09588221.2023.2246519
    Ansari, A. N., Ahmad, S., & Bhutta, S. M. (2023). Mapping the global evidence around the use of ChatGPT in higher education: A systematic scoping review. Education and Information Technologies. https://doi.org/10.1007/s10639-023-12223-4
    Barrot, J. S. (2023). Using ChatGPT for second language writing: Pitfalls and potentials. Assessing Writing, 57. https://doi.org/10.1016/j.asw.2023.100745
    Berdahl, L., Hoessler, C., Mulhall, S., & Matheson, K. (2020). Teaching Critical Thinking in Political Science: A Case Study. Journal of Political Science Education, 17(sup1), 910-925. https://doi.org/10.1080/15512169.2020.1744158
    Bozkurt, A., Karadeniz, A., Baneres, D., Guerrero-Roldán, A. E., & Rodríguez, M. E. (2021). Artificial Intelligence and Reflections from Educational Landscape: A Review of AI Studies in Half a Century. Sustainability, 13(2). https://doi.org/10.3390/su13020800
    Bronkhorst, H., Roorda, G., Suhre, C., & Goedhart, M. (2019). Logical Reasoning in Formal and Everyday Reasoning Tasks. International Journal of Science and Mathematics Education, 18(8), 1673-1694. https://doi.org/10.1007/s10763-019-10039-8
    Butler, H. A., Dwyer, C. P., Hogan, M. J., Franco, A., Rivas, S. F., Saiz, C., & Almeida, L. S. (2012). The Halpern Critical Thinking Assessment and real-world outcomes: Cross-national applications. Thinking Skills and Creativity, 7(2), 112-121. https://doi.org/10.1016/j.tsc.2012.04.001
    Cáceres, M., Nussbaum, M., & Ortiz, J. (2020). Integrating critical thinking into the classroom: A teacher’s perspective. Thinking Skills and Creativity, 37. https://doi.org/10.1016/j.tsc.2020.100674
    Chan, C. K. Y., & Hu, W. (2023). Students’ voices on generative AI: perceptions, benefits, and challenges in higher education. International Journal of Educational Technology in Higher Education, 20(1). https://doi.org/10.1186/s41239-023-00411-8
    Chao, P.-J., Hsu, T.-H., Liu, T.-P., & Cheng, Y.-H. (2021). Knowledge of and Competence in Artificial Intelligence: Perspectives of Vietnamese Digital-Native Students. IEEE Access, 9, 75751-75760. https://doi.org/10.1109/access.2021.3081749
    Chase, C. C., & Klahr, D. (2017). Invention Versus Direct Instruction: For Some Content, It’s a Tie. Journal of Science Education and Technology, 26(6), 582-596. https://doi.org/10.1007/s10956-017-9700-6
    Chatterjee, S., & Bhattacharjee, K. K. (2020). Adoption of artificial intelligence in higher education: a quantitative analysis using structural equation modelling. Education and Information Technologies, 25(5), 3443-3463. https://doi.org/10.1007/s10639-020-10159-7
    Chaudhry, I. S., Sarwary, S. A. M., El Refae, G. A., & Chabchoub, H. (2023). Time to Revisit Existing Student’s Performance Evaluation Approach in Higher Education Sector in a New Era of ChatGPT — A Case Study. Cogent Education, 10(1). https://doi.org/10.1080/2331186x.2023.2210461
    Chen, C.-H., Liu, T.-K., & Huang, K. (2021). Scaffolding vocational high school students’ computational thinking with cognitive and metacognitive prompts in learning about programmable logic controllers. Journal of Research on Technology in Education, 55(3), 527-544. https://doi.org/10.1080/15391523.2021.1983894
    Chen, L., Chen, P., & Lin, Z. (2020). Artificial Intelligence in Education: A Review. IEEE Access, 8, 75264-75278. https://doi.org/10.1109/access.2020.2988510
    Chen, X. (2020). AI + Education: Self-adaptive Learning Promotes Individualized Educational Revolutionary Proceedings of the 2020 6th International Conference on Education and Training Technologies, Macau, China. https://doi.org/10.1145/3399971.3399984
    Chen, X., Zou, D., Xie, H., Cheng, G., & Liu, C. (2022). Two Decades of Artificial Intelligence in Education Contributors, Collaborations, Research Topics, Challenges, and Future Directions. Educational Technology & Society, 25(1), 28-47. https://www.jstor.org/stable/48647028
    Chen, Y., Jensen, S., Albert, L. J., Gupta, S., & Lee, T. (2022). Artificial Intelligence (AI) Student Assistants in the Classroom: Designing Chatbots to Support Student Success. Information Systems Frontiers, 25(1), 161-182. https://doi.org/10.1007/s10796-022-10291-4
    Ching Sing, C., Liang, J.-C., Tsai, C.-C., & Dong, Y. (2019). Surveying and modelling China high school students’ experience of and preferences for twenty-first-century learning and their academic and knowledge creation efficacy. Educational Studies, 46(6), 658-675. https://doi.org/10.1080/03055698.2019.1627662
    Cone, C., Godwin, D., Salazar, K., Bond, R., Thompson, M., & Myers, O. (2016, Apr 25). Incorporation of an Explicit Critical-Thinking Curriculum to Improve Pharmacy Students' Critical-Thinking Skills. Am J Pharm Educ, 80(3), 41. https://doi.org/10.5688/ajpe80341
    Cropley, A. (2020). Creativity-focused Technology Education in the Age of Industry 4.0. Creativity Research Journal, 32(2), 184-191. https://doi.org/10.1080/10400419.2020.1751546
    Currie, G. M. (2023, Sep). Academic integrity and artificial intelligence: is ChatGPT hype, hero or heresy? Semin Nucl Med, 53(5), 719-730. https://doi.org/10.1053/j.semnuclmed.2023.04.008
    Deng, X., & Yu, Z. (2023). A Meta-Analysis and Systematic Review of the Effect of Chatbot Technology Use in Sustainable Education. Sustainability, 15(4). https://doi.org/10.3390/su15042940
    Dergaa, I., Chamari, K., Zmijewski, P., & Ben Saad, H. (2023, Apr). From human writing to artificial intelligence generated text: examining the prospects and potential threats of ChatGPT in academic writing. Biol Sport, 40(2), 615-622. https://doi.org/10.5114/biolsport.2023.125623
    Deveci,T. A., Dilek E, C., & Kolburan G, A. (2021). Chatbot application in a 5th grade science course. Educ Inf Technol (Dordr), 26(5), 6241-6265. https://doi.org/10.1007/s10639-021-10627-8
    Doabler, C. T., Clarke, B., Kosty, D., Kurtz-Nelson, E., Fien, H., Smolkowski, K., & Baker, S. K. (2018, 2019/03/01). Examining the Impact of Group Size on the Treatment Intensity of a Tier 2 Mathematics Intervention Within a Systematic Framework of Replication. Journal of Learning Disabilities, 52(2), 168-180. https://doi.org/10.1177/0022219418789376
    Du, Y., Li, T., & Gao, C. (2023, 2023/01/01/). Why do designers in various fields have different attitude and behavioral intention towards AI painting tools? an extended UTAUT model. Procedia Computer Science, 221, 1519-1526. https://doi.org/https://doi.org/10.1016/j.procs.2023.08.010
    Dwivedi, Y. K., Rana, N. P., Tamilmani, K., & Raman, R. (2020, Dec). A meta-analysis based modified unified theory of acceptance and use of technology (meta-UTAUT): a review of emerging literature. Curr Opin Psychol, 36, 13-18. https://doi.org/10.1016/j.copsyc.2020.03.008
    Frick, T. W. (2023). Are We Dupes? Limitations of AI Systems: What Should Educators Do with Them? TechTrends. https://doi.org/10.1007/s11528-023-00893-3
    García-Moro, F. J., Gómez-Baya, D., Muñoz-Silva, A., & Martín-Romero, N. (2021). A Qualitative and Quantitative Study on Critical Thinking in Social Education Degree Students. Sustainability, 13(12). https://doi.org/10.3390/su13126865
    García-Peñalvo, F. J. (2023). La percepción de la Inteligencia Artificial en contextos educativos tras el lanzamiento de ChatGPT: disrupción o pánico. Education in the Knowledge Society (EKS), 24. https://doi.org/10.14201/eks.31279
    Guest, K. (2010). Introducing Critical Thinking to ‘Non-standard' Entry Students. The Use of a Catalyst to Spark Debate. Teaching in Higher Education, 5(3), 289-299. https://doi.org/10.1080/713699139
    Guo, K., Zhong, Y., Li, D., & Chu, S. K. W. (2023). Effects of chatbot-assisted in-class debates on students’ argumentation skills and task motivation. Computers & Education, 203. https://doi.org/10.1016/j.compedu.2023.104862
    Halpern, D. F. (2013). Thought and knowledge: An introduction to critical thinking. psychology press.
    Hassan, K. E., & Madhum, G. (2006). Validating the Watson Glaser Critical Thinking Appraisal. Higher Education, 54(3), 361-383. https://doi.org/10.1007/s10734-006-9002-z
    Hemachandran, K., Verma, P., Pareek, P., Arora, N., Rajesh Kumar, K. V., Ahanger, T. A., Pise, A. A., & Ratna, R. (2022). Artificial Intelligence: A Universal Virtual Tool to Augment Tutoring in Higher Education. Comput Intell Neurosci, 2022, 1410448. https://doi.org/10.1155/2022/1410448
    Hsieh, Y.-Z., Lin, S.-S., Luo, Y.-C., Jeng, Y.-L., Tan, S.-W., Chen, C.-R., & Chiang, P.-Y. (2020). ARCS-Assisted Teaching Robots Based on Anticipatory Computing and Emotional Big Data for Improving Sustainable Learning Efficiency and Motivation. Sustainability, 12(14). https://doi.org/10.3390/su12145605
    Hwang, G.-J., Xie, H., Wah, B. W., & Gašević, D. (2020). Vision, challenges, roles and research issues of Artificial Intelligence in Education. Computers and Education: Artificial Intelligence, 1. https://doi.org/10.1016/j.caeai.2020.100001
    Kay, J. (2012). AI and Education: Grand Challenges. IEEE Intelligent Systems, 27(5), 66-69. https://doi.org/10.1109/MIS.2012.92
    Keeley, S. M., Browne, M. N., & Kreutzer, J. S. (1982). A Comparison of Freshmen and Seniors on General and Specific Essay Tests of Critical Thinking. Research in Higher Education, 17(2), 139-154. http://www.jstor.org/stable/40195487
    Kikalishvili, S. (2023). Unlocking the potential of GPT-3 in education: opportunities, limitations, and recommendations for effective integration. Interactive Learning Environments, 1-13. https://doi.org/10.1080/10494820.2023.2220401
    Ku, K. Y. L. (2009). Assessing students’ critical thinking performance: Urging for measurements using multi-response format. Thinking Skills and Creativity, 4(1), 70-76. https://doi.org/10.1016/j.tsc.2009.02.001
    Ku, K. Y. L., Ho, I. T., Hau, K.-T., & Lai, E. C. M. (2013). Integrating direct and inquiry-based instruction in the teaching of critical thinking: an intervention study. Instructional Science, 42(2), 251-269. https://doi.org/10.1007/s11251-013-9279-0
    Kumar, P. M. (2021). Special issue on Artificial Intelligence in Engineering Education. Computer Applications in Engineering Education, 29(2), 311-311. https://doi.org/10.1002/cae.22398
    Lai, E. R. (2011). Critical thinking: A literature review. Pearson's Research Reports, 6(1), 40-41.
    Lakens, D. (2022). Sample Size Justification. Collabra: Psychology, 8(1). https://doi.org/10.1525/collabra.33267
    Lee, Y.-F., Hwang, G.-J., & Chen, P.-Y. (2022). Impacts of an AI-based chabot on college students’ after-class review, academic performance, self-efficacy, learning attitude, and motivation. Educational Technology Research and Development, 70(5), 1843-1865. https://doi.org/10.1007/s11423-022-10142-8
    Liu, Y., & Pásztor, A. (2023). Survey on the influential demographic factors of Chinese undergraduate students’ critical thinking disposition: Evidence from plausible values. Thinking Skills and Creativity, 50. https://doi.org/10.1016/j.tsc.2023.101397
    Luckin, R., & Holmes, W. (2016). Intelligence unleashed: An argument for AI in education.
    Maphosa, V., & Maphosa, M. (2021). The Trajectory of Artificial Intelligence Research in Higher Education: A Bibliometric Analysis and Visualisation 2021 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD). https://doi.org/10.1109/icABCD51485.2021.9519368
    Marin, L. M., & Halpern, D. F. (2011). Pedagogy for developing critical thinking in adolescents: Explicit instruction produces greatest gains. Thinking Skills and Creativity, 6(1), 1-13. https://doi.org/10.1016/j.tsc.2010.08.002
    Menon, D., & Shilpa, K. (2023, Nov). "Chatting with ChatGPT": Analyzing the factors influencing users' intention to Use the Open AI's ChatGPT using the UTAUT model. Heliyon, 9(11), e20962. https://doi.org/10.1016/j.heliyon.2023.e20962
    Michalon, B., & Camacho-Zuñiga, C. (2023). ChatGPT, a brand-new tool to strengthen timeless competencies. Frontiers in Education, 8. https://doi.org/10.3389/feduc.2023.1251163
    Moreno-Guerrero, A.-J., López-Belmonte, J., Marín-Marín, J.-A., & Soler-Costa, R. (2020). Scientific Development of Educational Artificial Intelligence in Web of Science. Future Internet, 12(8). https://doi.org/10.3390/fi12080124
    Motz, B. A., Fyfe, E. R., & Guba, T. P. (2023). Learning to call bullsh*t via induction: Categorization training improves critical thinking performance. Journal of Applied Research in Memory and Cognition, 12(3), 310-324. https://doi.org/10.1037/mac0000053
    Nguyen, Q. N., Sidorova, A., & Torres, R. (2022). User interactions with chatbot interfaces vs. Menu-based interfaces: An empirical study. Computers in Human Behavior, 128. https://doi.org/10.1016/j.chb.2021.107093
    Ouyang, F., & Jiao, P. (2021). Artificial intelligence in education: The three paradigms. Computers and Education: Artificial Intelligence, 2. https://doi.org/10.1016/j.caeai.2021.100020
    Payan-Carreira, R., Sacau-Fontenla, A., Rebelo, H., Sebastião, L., & Pnevmatikos, D. (2022). Development and Validation of a Critical Thinking Assessment-Scale Short Form. Education Sciences, 12(12). https://doi.org/10.3390/educsci12120938
    Penkauskiene, D., Valaviciene, N., Pivoriene, J., Railiene, A., Merfeldaite, O., Indrasiene, V., Sadauskas, J., & Jegeleviciene, V. (2020). CRITICAL THINKING EMBEDDEDNESS IN HIGHER EDUCATION PROGRAMMES [Article]. Journal of Education Culture and Society, 11(2), 121-132. <Go to ISI>://WOS:000569134500009
    Pugalenthi, R., Prabhu Chakkaravarthy, A., Ramya, J., Babu, S., & Rasika Krishnan, R. (2020). Artificial learning companionusing machine learning and natural language processing. International Journal of Speech Technology, 24(3), 553-560. https://doi.org/10.1007/s10772-020-09773-0
    Quintana, R., & Schunn, C. (2019). Who Benefits From a Foundational Logic Course? Effects on Undergraduate Course Performance. Journal of Research on Educational Effectiveness, 12(2), 191-214. https://doi.org/10.1080/19345747.2018.1543372
    Ragupathi, K., Yeo, Z. H., & Loy, H. C. (2022). Promoting Critical Thinking and Learning in a Large-Enrolment Humanities Class. Teaching and Learning Inquiry, 10. https://doi.org/10.20343/teachlearninqu.10.6
    Ramirez, H. J. M., & Monterola, S. L. C. (2019). Co-creating scripts in computer-supported collaborative learning and its effects on students’ logical thinking in earth science. Interactive Learning Environments, 30(5), 908-921. https://doi.org/10.1080/10494820.2019.1702063
    Razzouk, R., & Shute, V. (2012). What Is Design Thinking and Why Is It Important? Review of Educational Research, 82(3), 330-348. https://doi.org/10.3102/0034654312457429
    Robinson, S. R. (2011). Teaching logic and teaching critical thinking: revisiting McPeck. Higher Education Research & Development, 30(3), 275-287. https://doi.org/10.1080/07294360.2010.500656
    Russell, S. J., & Norvig, P. (2010). Artificial intelligence a modern approach. London.
    Sébille, V., Blanchin, M., Guillemin, F., Falissard, B., & Hardouin, J.-B. (2014, 2014/07/05). A simple ratio-based approach for power and sample size determination for 2-group comparison using Rasch models. BMC Medical Research Methodology, 14(1), 87. https://doi.org/10.1186/1471-2288-14-87
    Sennott, S. C., Akagi, L., Lee, M., & Rhodes, A. (2019, Oct-Dec). AAC and Artificial Intelligence (AI). Top Lang Disord, 39(4), 389-403. https://doi.org/10.1097/tld.0000000000000197
    Singer, J. (1997, Dec 30). Estimating sample size for continuous outcomes, comparing more than two parallel groups with unequal sizes. Stat Med, 16(24), 2805-2811. https://doi.org/10.1002/(sici)1097-0258(19971230)16:24<2805::aid-sim676>3.0.co;2-b
    Smith, T. E., Rama, P. S., & Helms, J. R. (2018). Teaching critical thinking in a GE class: A flipped model. Thinking Skills and Creativity, 28, 73-83. https://doi.org/10.1016/j.tsc.2018.02.010
    Sosu, E. M. (2013). The development and psychometric validation of a Critical Thinking Disposition Scale. Thinking Skills and Creativity, 9, 107-119. https://doi.org/10.1016/j.tsc.2012.09.002
    Strzelecki, A. (2023). To use or not to use ChatGPT in higher education? A study of students’ acceptance and use of technology. Interactive Learning Environments, 1-14. https://doi.org/10.1080/10494820.2023.2209881
    Strzelecki, A., & ElArabawy, S. (2024). Investigation of the moderation effect of gender and study level on the acceptance and use of generative AI by higher education students: Comparative evidence from Poland and Egypt. British Journal of Educational Technology. https://doi.org/10.1111/bjet.13425
    Su, Y., Lin, Y., & Lai, C. (2023). Collaborating with ChatGPT in argumentative writing classrooms. Assessing Writing, 57. https://doi.org/10.1016/j.asw.2023.100752
    Suzuki, K. (2020). AI: A New Open Access Journal for Artificial Intelligence. Ai, 1(2), 141-142. https://doi.org/10.3390/ai1020007
    Taecharungroj, V. (2023). “What Can ChatGPT Do?” Analyzing Early Reactions to the Innovative AI Chatbot on Twitter. Big Data and Cognitive Computing, 7(1). https://doi.org/10.3390/bdcc7010035
    Tian, W., Ge, J., Zhao, Y., & Zheng, X. (2024). AI Chatbots in Chinese higher education: adoption, perception, and influence among graduate students-an integrated analysis utilizing UTAUT and ECM models. Front Psychol, 15, 1268549. https://doi.org/10.3389/fpsyg.2024.1268549
    Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User Acceptance of Information Technology: Toward a Unified View. MIS Quarterly, 27(3), 425-478. https://doi.org/10.2307/30036540
    Venkatesh, V., Thong, J. Y. L., & Xu, X. (2012). Consumer Acceptance and Use of Information Technology: Extending the Unified Theory of Acceptance and Use of Technology. MIS Quarterly, 36(1), 157-178. https://doi.org/10.2307/41410412
    Wang, Y.-M., Wei, C.-L., Lin, H.-H., Wang, S.-C., & Wang, Y.-S. (2022). What drives students’ AI learning behavior: a perspective of AI anxiety. Interactive Learning Environments, 1-17. https://doi.org/10.1080/10494820.2022.2153147
    Wang, Y.-Y., & Wang, Y.-S. (2022, 2022/04/03). Development and validation of an artificial intelligence anxiety scale: an initial application in predicting motivated learning behavior. Interactive Learning Environments, 30(4), 619-634. https://doi.org/10.1080/10494820.2019.1674887
    Wang, Z. (2020). Computer-assisted EFL writing and evaluations based on artificial intelligence: a case from a college reading and writing course. Library Hi Tech, 40(1), 80-97. https://doi.org/10.1108/lht-05-2020-0113
    Wu, R., & Yu, Z. (2023). Do AI chatbots improve students learning outcomes? Evidence from a meta‐analysis. British Journal of Educational Technology. https://doi.org/10.1111/bjet.13334
    Wu, W., Zhang, B., Li, S., & Liu, H. (2022). Exploring Factors of the Willingness to Accept AI-Assisted Learning Environments: An Empirical Investigation Based on the UTAUT Model and Perceived Risk Theory. Front Psychol, 13, 870777. https://doi.org/10.3389/fpsyg.2022.870777
    Xu, J. J., & Babaian, T. (2021). Artificial intelligence in business curriculum: The pedagogy and learning outcomes. The International Journal of Management Education, 19(3). https://doi.org/10.1016/j.ijme.2021.100550
    Yang, Y.-T. C. (2012). Cultivating critical thinkers: Exploring transfer of learning from pre-service teacher training to classroom practice. Teaching and Teacher Education, 28(8), 1116-1130. https://doi.org/10.1016/j.tate.2012.06.007
    Zhang, Q., Tang, H., & Xu, X. (2022). Analyzing collegiate critical thinking course effectiveness: Evidence from a quasi-experimental study in China. Thinking Skills and Creativity, 45. https://doi.org/10.1016/j.tsc.2022.101105
    Zhong, H.-X., Chang, J. H., Lai, C. F., Chen, P. W., Ku, S. H., & Chen, S. Y. (2023). Information undergraduate and non-information undergraduate on an artificial intelligence learning platform: an artificial intelligence assessment model using PLS-SEM analysis. Education and Information Technologies. https://doi.org/10.1007/s10639-023-11961-9
    Zhou, Y., Chai, C. S., Liang, J.-C., Jin, M., & Tsai, C.-C. (2017). The Relationship Between Teachers’ Online Homework Guidance and Technological Pedagogical Content Knowledge about Educational Use of Web. The Asia-Pacific Education Researcher, 26(5), 239-247. https://doi.org/10.1007/s40299-017-0344-3
    Zou, X., Su, P., Li, L., & Fu, P. (2023). AI-generated content tools and students’ critical thinking: Insights from a Chinese university. IFLA Journal. https://doi.org/10.1177/03400352231214963

    下載圖示
    QR CODE