研究生: |
林信文 Lin, Xin-Wen |
---|---|
論文名稱: |
高增益電力轉換器應用於獨立型太陽能發電系統 High - Gain Power Converter Applied to Stand alone Solar Power Generation Systems |
指導教授: |
劉華棟
Liu, Hwa-Dong |
口試委員: |
劉華棟
Liu,Hwa-Dong 林長華 Lin, Chang-Hua 黃良印 Huang, Liang-Yin 陳韋任 Chen, Wei-Jen |
口試日期: | 2024/07/04 |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 高增益電力轉換器 、太陽能發電系統 、升壓式轉換器 、直流電網 、逆變器 |
英文關鍵詞: | High-Gain Power Converter, Solar Power Systems, Boost Converters, Direct Current Grids, Inverter |
研究方法: | 實驗設計法 、 準實驗設計法 、 比較研究 |
DOI URL: | http://doi.org/10.6345/NTNU202400952 |
論文種類: | 學術論文 |
相關次數: | 點閱:222 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出了一種新型的高增益電力轉換器,旨在應用於獨立型太陽能發電系統。在太陽能發電系統中,電力電子轉換器和最大功率點追蹤技術是該系統的兩個關鍵要素。由於傳統太陽能板的發電輸出電壓較低,因此需要透過串聯的方式來提高電壓水平。然而,這也導致當太陽能板發生遮蔭現象時,輸出功率會急劇下降,進而影響整體系統轉換效率的問題。首先,本研究提出的高增益電力轉換器能夠接受太陽能板的輸入電壓範圍為20V-40V。所提出的電力轉換器將在低責任週期下操作,將輸入電壓轉換為380V的直流電,轉換效率達到80%以上。此外,所提出的轉換器與爬山演算法最大功率追蹤算法結合運用,以實現系統的最大發電效能,其中最大功率點效能達99%。其次,本系統可將太陽能板以並聯的方式連接,以改善太陽能板串聯產生遮蔭問題,進而提升系統效能。最後,本研究使用MATLAB進行模擬和實測驗證,證明所提出的電力轉換器的效能優於傳統的升壓式轉換器。
This study proposes a new type of high-gain power converter intended for use in stand-alone solar power generation systems. In solar power generation systems, power electronic converters and maximum power point tracking technology are two key elements of the system. Since the power output voltage of traditional solar panels is low, it is necessary to increase the voltage level through series connection. However, this also leads to the problem that when the solar panel is shaded, the output power will drop sharply, thus affecting the overall system conversion efficiency. First, the high-gain power converter proposed in this study can accept the input voltage range of the solar panel from 20V-40V. The proposed power converter will operate at low duty cycles, converting the input voltage to 380V DC with a conversion efficiency of over 80%. In addition, the proposed converter is combined with the hill-climbing algorithm maximum power tracking algorithm to achieve the maximum power generation efficiency of the system, with the maximum power point efficiency reaching 99%. Secondly, this system can connect solar panels in parallel to improve the shading problem caused by series connection of solar panels, thereby improving system efficiency. Finally, this study uses MATLAB for simulation and actual measurement verification to prove that the performance of the proposed power converter is better than the traditional boost converter.
經濟部能源署_電力供給月資料,2024年2月,檢自:https://data.gov.tw/dataset/112650
經濟部能源署_再生能源發電量統計,112年8月,檢自:https://www.re.org.tw/information/statistics_more.aspx?id=6430
A. K. Onaolapo, R. P. Carpanen, D. G. Dorrell and E. E. Ojo, "Assessment of Sustainable Development: a Nexus between Reliability, Greenhouse Gas Emissions and Renewable Energy Technologies," 2022 30th Southern African Universities Power Engineering Conference (SAUPEC), Durban, South Africa, 2022, pp. 1-5, doi: 10.1109/SAUPEC55179.2022.9730748.
行政院,重要政策,2023年11月,檢自:https://www.ey.gov.tw/Page/5A8A0CB5B41DA11E/46de50e1-7381-4634-93e7-4cd320ec308b
A. Desai, I. Mukhopadhyay and A. Ray, "Exploring Technical and Economic Feasibility of a Stand-Alone Solar PV Based DC Distribution System Over AC for Use in Houses," 2020 47th IEEE Photovoltaic Specialists Conference (PVSC), Calgary, AB, Canada, 2020, pp. 2387-2391, doi: 10.1109/PVSC45281.2020.9300411.
R. Verma, S. Gupta and A. Yadav, "Comparative Analysis of Different Shading Patterns in Case of Total Cross Tied Connection for Solar PV Panels," 2023 2nd International Conference for Innovation in Technology (INOCON), Bangalore, India, 2023, pp. 1-6, doi: 10.1109/INOCON57975.2023.10101360.
Z. Bi, J. Ma, K. L. Man, Y. Yue and J. S. Smith, "A Novel Global Maximum Power Point Tracking Technique based on Shading Detection for Photovoltaic Strings," 2020 International SoC Design Conference (ISOCC), Yeosu, Korea (South), 2020, pp. 165-166, doi: 10.1109/ISOCC50952.2020.9333031.
B. Jyothi, P. Bhavana, B. T. Rao and M. S. K. Reddy, "A Review on Various DC-DC Converters for Photo Voltaic Based DC Micro Grids," 2021 Emerging Trends in Industry 4.0 (ETI 4.0), Raigarh, India, 2021, pp. 1-8, doi: 10.1109/ETI4.051663.2021.9619280.
C. Liang, X. Ji, Y. Zhang, W. Ren, P. Cheng and Y. An, "Design and Research of Bidirectional DC/DC Converter for Energy Storage System of DC Micro-grid," 2020 Chinese Automation Congress (CAC), Shanghai, China, 2020, pp. 4636-4641, doi: 10.1109/CAC51589.2020.9327558.
Pveducation,Solar Cell Structure,檢自:https://www.pveducation.org/pvcdrom/solar-cell-operation/solar-cell-structure
J. Yao and R. Zhang, "Analysis of structural characteristics and development trend of solar cells," 2022 International Conference on Applied Physics and Computing (ICAPC), Ottawa, ON, Canada, 2022, pp. 47-51, doi: 10.1109/ICAPC57304.2022.00015.
Mysolarquotes,太陽能板種類,檢自:https://www.mysolarquotes.co.nz/blog/solar-technology/what-is-the-difference-between-monocrystalline-polycrystalline-and-thin-film-solar-panels-/
STOCKFEEL,太陽能電池的原理與種類,2019年2月,檢自:https://www.stockfeel.com.tw/%E5%A4%AA%E9%99%BD%E8%83%BD%E9%9B%BB%E6%B1%A0%E7%9A%84%E5%8E%9F%E7%90%86%E8%88%87%E7%A8%AE%E9%A1%9E/
S. Vujošević, "Comparative Analysis of Degradation in Monocrystalline and Amorphous Silicon Solar Cells," 2024 28th International Conference on Information Technology (IT), Zabljak, Montenegro, 2024, pp. 1-5, doi: 10.1109/IT61232.2024.10475745.
A. Alotaibi, A. Sabouni and F. Sabouni, "Miniature Microstrip Slot loaded Patch Antennas with Polycrystalline Silicon Solar Cells," 2018 International Applied Computational Electromagnetics Society Symposium - China (ACES), Beijing, China, 2018, pp. 1-2, doi: 10.23919/ACESS.2018.8669271.
R. V. K. Chavali, E. C. Johlin, J. L. Gray, T. Buonassisi and M. A. Alam, "Process-to-panel modeling of a-Si/c-Si heterojunction solar cells," 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), New Orleans, LA, USA, 2015, pp. 1-3, doi: 10.1109/PVSC.2015.7356126.
R. R. King et al., "Advanced III-V Multijunction Cells for Space," 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, Waikoloa, HI, USA, 2006, pp. 1757-1762, doi: 10.1109/WCPEC.2006.279831.
R. H. Nguyen, "Gallium arsenide. Its uses in photovoltaic applications," in IEEE Potentials, vol. 17, no. 5, pp. 33-35, Dec. 1998-Jan. 1999, doi: 10.1109/45.730971.
Y. Suchikova, I. Bohdanov, S. Kovachov, L. Dannik, A. M. Moskina and A. I. Popov, "Texturing of Indium Phosphide for Improving the Characteristics of Space Solar Cells," 2021 IEEE 12th International Conference on Electronics and Information Technologies (ELIT), Lviv, Ukraine, 2021, pp. 194-197, doi: 10.1109/ELIT53502.2021.9501098.
Y. Okuno et al., "Degradation mechanisms of InGaP solar cells by irradiation with less than 100 keV electrons," 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC), Portland, OR, USA, 2016, pp. 2596-2600, doi: 10.1109/PVSC.2016.7750118.
H. P. Yoon et al., "High-resolution local current measurement of CdTe solar cells," 2012 38th IEEE Photovoltaic Specialists Conference, Austin, TX, USA, 2012, pp. 003217-003219, doi: 10.1109/PVSC.2012.6318262.
I. Bohdanov, S. Kovachov, N. Tsybuliak, H. Lopatina, A. Popova and Y. Suchikova, "Design and Structural Investigation of CuIn(Ga)Se2 Films for Solar Energy Applications," 2023 IEEE 13th International Conference Nanomaterials: Applications & Properties (NAP), Bratislava, Slovakia, 2023, pp. NSS10-1-NSS10-4, doi: 10.1109/NAP59739.2023.10310680.
Getsolar,太陽能板材料種類分析比較表,2020年3月,檢自:https://getsolar.ai/blog/types-of-solar-panels/
N. Sy, C. -S. Chiu and W. -E. Shao, "MPPT Design for a DC Stand-Alone Solar Power System with Partial Shaded PV Modules," 2019 International Conference on System Science and Engineering (ICSSE), Dong Hoi, Vietnam, 2019, pp. 31-36, doi: 10.1109/ICSSE.2019.8823469.
PennState,Main components of large PV systems,檢自:https://www.e-education.psu.edu/eme812/node/681
B. Pakkiraiah and G. D. Sukumar, "Research survey on various MPPT performance issues to improve the solar PV system efficiency," 2016.
Y. Zhang, "Analysis of High Gain DC-DC Converters for DC Microgrid," 2023 IEEE 3rd International Conference on Power, Electronics and Computer Applications (ICPECA), Shenyang, China, 2023, pp. 1354-1359, doi: 10.1109/ICPECA56706.2023.10075947.
M. Sagar Bhaskar, M. Meraj, A. Iqbal, S. Padmanaban, P. Kiran Maroti and R. Alammari, "High Gain Transformer-Less Double-Duty-Triple-Mode DC/DC Converter for DC Microgrid," in IEEE Access, vol. 7, pp. 36353-36370, 2019, doi: 10.1109/ACCESS.2019.2902440.
J. Ahmad, M. Zaid, A. Sarwar, C. H. Lin, M. Asim, R. K. Yadav, et al., "A new high-gain DC-DC converter with continuous input current for DC microgrid applications," Energies, vol. 14, no. 9, p. 2629, 2021.
M. Muthusamy and A. Chandwani, "Comparison of Traditional and Quasi-Z-Source Inverters for Electric Vehicle Applications," 2020 52nd North American Power Symposium (NAPS), Tempe, AZ, USA, 2021, pp. 1-6, doi: 10.1109/NAPS50074.2021.9449804.
Fang Zheng Peng, "Z-source inverter," in IEEE Transactions on Industry Applications, vol. 39, no. 2, pp. 504-510, March-April 2003, doi: 10.1109/TIA.2003.808920.
T. Esram and P. L. Chapman, "Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques," in IEEE Transactions on Energy Conversion, vol. 22, no. 2, pp. 439-449, June 2007, doi: 10.1109/TEC.2006.874230.
J. Isozaki, K. Suzuki, W. Kitagawa and T. Takeshita, "PWM strategies with duality between current and voltage source AC/DC converters for suppressing AC harmonics or DC ripples," 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 2016, pp. 1-8, doi: 10.1109/ECCE.2016.7855373.
D. Vinnikov, I. Roasto, R. Strzelecki and M. Adamowicz, "Step-Up DC/DC Converters With Cascaded Quasi-Z-Source Network," in IEEE Transactions on Industrial Electronics, vol. 59, no. 10, pp. 3727-3736, Oct. 2012, doi: 10.1109/TIE.2011.2178211.
C. Jianbo et al., "Simulation research on improved perturbation and observation method based on variable step size," 2018 Chinese Control And Decision Conference (CCDC), Shenyang, China, 2018, pp. 4223-4228, doi: 10.1109/CCDC.2018.8407858.
M. I. Bahari, P. Tarassodi, Y. M. Naeini, A. K. Khalilabad and P. Shirazi, "Modeling and simulation of hill climbing MPPT algorithm for photovoltaic application," 2016 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), Capri, Italy, 2016, pp. 1041-1044, doi: 10.1109/SPEEDAM.2016.7525990.
S. Mohanty, B. Subudhi and P. K. Ray, "A Grey Wolf-Assisted Perturb & Observe MPPT Algorithm for a PV System," in IEEE Transactions on Energy Conversion, vol. 32, no. 1, pp. 340-347, March 2017, doi: 10.1109/TEC.2016.2633722.
M. Li, D. Liu and C. Wang, "Analysis of Photovoltaic Cell Power Characteristics Based on Cuckoo Search Algorithm," 2023 IEEE 5th International Conference on Power, Intelligent Computing and Systems (ICPICS), Shenyang, China, 2023, pp. 114-118, doi: 10.1109/ICPICS58376.2023.10235461.
Qi, J., Zhang, Y., & Chen, Y. (2014). "Modeling and maximum power point tracking (MPPT) method for PV array under partial shade conditions." Renewable Energy, 66, pp. 337-345.