簡易檢索 / 詳目顯示

研究生: 傅偉豪
Fu, Wei-Hao
論文名稱: 元件層級及系統層級之靜電放電防護設計
Component-Level and System-Level ESD Protection Design
指導教授: 林群祐
Lin, Chun-Yu
學位類別: 碩士
Master
系所名稱: 電機工程學系
Department of Electrical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 97
中文關鍵詞: 雙極性電晶體元件層級靜電放電二極體靜電放電金屬氧化物半導體矽控整流器系統層級靜電放電
英文關鍵詞: bipolar junction transistor (BJT), component-level ESD, diode, electrostatic discharge (ESD), metal-oxide-semiconductor (MOS), silicon-controlled rectifier (SCR), system-level ESD
DOI URL: https://doi.org/10.6345/NTNU202202850
論文種類: 學術論文
相關次數: 點閱:353下載:44
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著製程演進,積體電路中電晶體尺寸逐漸縮小,靜電放電 (ESD) 容易造成晶片內部不可逆之破壞,因此積體電路產品中靜電放電防護的可靠度議題必須被深入探討。
    現今的積體電路在出廠時需要做元件層級的靜電放電測試,當積體電路安裝在電子產品後,又需要做系統層級的靜電放電測試。因系統層級靜電放電的測試規範 (IEC 61000-4-2) 的嚴格要求,積體電路產品常通過了元件層級靜電放電的測試標準,也可能無法達到系統層級的靜電放電的標準,因此本論文進行元件層級和系統層級的靜電放電防護研究。
    在論文第二章使用雙極性電晶體 (BJT)、二極體 (diode)、閘極接地N型金屬氧化物半導體場效電晶體 (GGNMOS)、靜電放電箝制 (power clamp) 作為靜電放電防護電路的研究基礎,並在0.18um 1.8 V 的 Bi CMOS製程下實現。這些防護電路使用傳輸線觸波產生器 (TLP) 系統、人體放電模式 (HBM) 儀器、靜電槍 (ESD gun) 進行測試,測試結果證明二極體和靜電放電箝制有較好的元件層級的防護能力。瞬態電壓抑制 (TVS) 二極體被用來提升系統層級的靜電放電防護能力。
    在論文第三章提出了一項創新使用二極體串嵌入式矽控整流器 (DSESCR) 之靜電放電防護元件,因傳統式的二極體串聯 (TDS) 和 改善型二極體串 (IDS) 有較高箝制電壓及高漏電流,故DSESCR被用來改善缺點。此元件在0.18um 1.8 V 的 CMOS製程下實現。這些防護電路使用TLP系統、HBM 儀器、ESD gun進行測試,測試結果證明能有效改善漏電過大及箝制電壓過大的缺點。
    本論文第二章及第三章所設計的元件,可以依其特性應用在各種的電路上,能夠有效的防護內部電路。

    With the continuous evolution of semiconductor integrated circuits (ICs) process, electrostatic discharge (ESD) events are likely to cause IC products suffered irreversible damage. All microelectronic products must meet the reliability specifications. Therefore, ESD must be taken into consideration.
    Nowadays, when the IC chip is produced, it must test the robustness of component-level ESD. When the IC chip is mounted on the electronics products, it also needs to test the robustness of system-level ESD. The component-level and system-level ESD qualifications are needed to test based on a set of corresponding standardization documents. System-level ESD is an increasingly important reliability issue in CMOS IC products. It has been also reported that reliability issues still exist in CMOS ICs under system-level ESD tests, even though IC products have passed component-level ESD specifications. Therefore, the component-level and system-level ESD robustness are analyzed in this thesis.
    In chapter 2, the ESD protection circuits of bipolar junction transistor (BJT), diode, gate-grounded NMOS (GGNMOS), and power clamp are studied. These ESD protection circuits have been fabricated in 0.18-μm 1.8V BiCMOS process. The transmission-line-pulsing (TLP) system, human-body-model (HBM), and ESD gun are used to verify ESD protection circuits. The experimental results of diodes and power clamp show better component-level ESD robustness. Transient-voltage-suppression (TVS) diode is used to improve the system-level ESD robustness.
    In chapter 3, a novel design of diode string with embedded silicon-controlled rectifier (DSESCR) device is proposed for ESD protection. The traditional diode string (TDS) and improved diode string (IDS) have drawbacks of a high clamp voltage and a high leakage current, so DSESCR is proposed to improve these drawbacks. These ESD protection circuits have been fabricated in 0.18-μm 1.8V CMOS process. The TLP system, HBM, and ESD gun are used to verify IDS and DSESCR device. DSESCR can improve the clamp voltage and leakage current.
    In chapter 2 and chapter 3, according to their characteristics of the ESD protection devices, the devices can be used to protect different internal circuits.

    中文摘要 I 英文摘要 III 致謝 V 目錄 VII 表目錄 IX 圖目錄 XII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Background of ESD 2 1.3 Testing Methods 2 1.3.1 Component-Level ESD Test 3 1.3.2 System-Level ESD Test 7 1.4 Thesis Organization 12 Chapter 2 Study of On-Chip ESD Protection Circuits in BiCMOS Proces 13 2.1 ESD Protection Design by Using BJT, Diodes, and GGNMOS 14 2.2 Experimental Results under DC Voltage Supply 24 2.2.1 Measured Leakage Currents 24 2.2.2 Measured DC I-V Characteristics 33 2.3 Experimental Results under Component-Level ESD Test 36 2.3.1 Measured TLP I-V Curves 36 2.3.2 Measured ESD Robustness 51 2.3.3 Comparison and Discussion 53 2.4 Experimental Results under System-Level ESD Test 57 2.4.1 Failure Analysis 62 2.5 Summary on On-Chip ESD Protection Circuits in BiCMOS Process 64 Chapter 3 Design of Improved Diode String with Embedded SCR in CMOS Process 65 3.1 ESD Protection Design by Using Improved Diode String 66 3.2 ESD Protection Design by Using Diode String with Embedded SCR 68 3.3 Measured Leakage Currents 71 3.4 Experimental Results under Component-Level ESD Test 72 3.4.1 Measured TLP I-V Curves 72 3.4.2 Measured ESD Robustness 76 3.4.3 Comparison and Discussion 77 3.5 Experimental Results under System-Level ESD Test 78 3.5.1 Failure Analysis 79 3.6 Comparison of measurement results 83 3.7 Summary 85 Chapter 4 Conclusions and Future Works 86 4.1 Conclusions 86 4.2 Future Works 87 References 88 自傳 97 學術成就 97

    [1] M.-D. Ker and Y.-W. Hsiao, “Investigation on board-level CDM ESD issue in IC products,” Proc. IEEE Trans. Device and Materials Reliability, vol. 8, no. 4, pp. 694-704, Dec. 2008.
    [2] M.-D. Ker, C.-K. Huang, Y.-W. Hsiao, and Y.-F. Hsieh, “Chip-level and board-level CDM ESD tests on IC products,” Proc. 2009 16th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits, pp. 45-49, July 2009.
    [3] N.-C. Chen, M. Chang, and C. Tseng, “A low-cost electronic product fabrication and assembly with improvement of thermal performance and ESD protection,” Proc. IEEE High Density packaging and Microsystem Integration, 2007, HDP '07. International Symposium on, pp.1-4, June 2007.
    [4] T. Smedes and Y. Christoforou, “On the relevance of IC ESD performance to product quality,” Proc. IEEE Electrical Overstress/Electrostatic Discharge Symposium, 2008. EOS/ESD 2008.30th, pp. 14-20, Sept. 2008.
    [5] P. Tamminen, “System level ESD discharges with electrical products,” in Proc. IEEE Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD), 2012 34th, pp. 1-10, Sept. 2012.
    [6] K. Muhonen, “Best practices for system level ESD testing of semiconductor components,” Proc. 2013 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), pp. 1-4, Oct. 2013.
    [7] S. Voldman, ESD: circuits and devices, John Wiley & Sons, 2006.
    [8] A. Wang, “On-chip ESD protection for integrated circuits: an IC design perspective,” Kluwer, 2002.
    [9] S. Dabral and T. Maloney, Basic ESD and I/O design, John Wiley & Sons, 1998.
    [10] M.-D. Ker, J.-J. Peng, and H.-C. Jiang, “ESD test methods on integrated circuits: an overview,” in Proc. IEEE Int. Conf. Electronics, Circuits, and Systems, 2001.
    [11] M. Scholz, A. Shibkov, S.-H. Chen, D. Linten, S. Thijs, M. Sawada, G. Vandersteen, and G. Groeseneken, “Mixed-mode simulations for power-on ESD analysis,” in Proc. EOS/ESD Symp., 2012, pp. 1-9.
    [12] A. Amerasekera and C. Duvvury, ESD in silicon integrated circuits, 2nd edition, New York: Wiley, 2002.
    [13] IEC 61000-4-2 Standard, “EMC – Part 4-2: testing and measurement techniques – electrostatic discharge immunity test,” IEC, 2008.
    [14] ESD STM5.1-2007: electrostatic discharge sensitivity testing – human body model, ESD association, Rome, NY.
    [15] Industry Council on ESD Target Levels, “White paper 1: a case for lowering component level HBM/MM ESD specifications and requirements,” September 2011.
    [16] ESD STM5.2-2009: electrostatic discharge sensitivity testing – machine model, ESD association, Rome, NY.
    [17] ESD STM5.3.1-2009: electrostatic discharge sensitivity testing – charged device model, ESD association, Rome, NY.
    [18] Industry Council on ESD Target Levels, “White paper 2: a case for lowering component level CDM ESD specifications and requirements,” April 2010.
    [19] JEDEC Standard JESD22-A114-E, “Electrostatic discharge (ESD) sensitivity testing human body model,” JEDEC, 2007.
    [20] H. Tanaka, O. Fujiwara, and Y. Yamanaka, “A circuit approach to simulate discharge, current injected in contact with an ESD-gun,” Proc. IEEE Electromagnetic Compatibility, 2002 3rd International Symposium on, pp. 486-489, May 2002.
    [21] K. Shrier, T. Truong, and J. Felps, “Transmission line pulse test methods, test techniques and characterization of low capacitance voltage suppression device for system level electrostatic discharge compliance,” Proc. IEEE Electrical Overstress/Electrostatic Discharge Symposium, 2004. EOS/ESD '04, pp. 1-10, Sept. 2004.
    [22] T. Schwingshackl, A. Schmenn, D. Sojka, A. Bohme, J. Dietl, M. Jauvion, G. Bettineschi, J. Willemen, R. Gabl, R. Peichl, H. Werthmann, J. Huber, A. Glas, K. Diefenbeck, W. Simburger, and W. Bosch, “Key performance parameters of ESD protection devices for high speed I/O, RF and monolithic microwave integrated circuits,” Proc. Conferences - ARMMS RF & Microwave Society, 2012.
    [23] M.-D. Ker, W.-Y. Lin, C.-C. Yen, C.-M. Yang, T.-Y. Chen, and S.-F. Chen, “On-chip ESD detection circuit for system-level ESD protection design,” Proc. Solid-State and Integrated Circuit Technology (ICSICT), 2010 10th IEEE International Conference on, pp. 1584-1587, Nov. 2010.
    [24] M.-D. Ker and Y.-Y. Sung, “Hardware/firmware co-design in an 8-bits microcontroller to solve the system-level ESD issue on keyboard,” in Proc. EOS/ESD Symp., 1999, pp. 352–360.
    [25] H.-T. Mayerhofer, J.-A. Willemen, and Matthias, “ESD protection considerations in advanced high-voltage technologies for automotive,” Proc. IEEE 2006 Electrical Overstress/Electrostatic Discharge Symposium, pp. 54-63, Sept. 2006.
    [26] M.-D. Ker and S.-C. Liu, "Whole-chip ESD protection design for submicron CMOS VLSI," Proc. of IEEE International Symposium on Circuits and Systems, pp. 1920-1923, 1997.
    [27] M.-D. Ker, “Whole-chip ESD protection design with efficient VDD-to-VSS ESD clamp circuit for submicron CMOS VLSI,” IEEE Trans. Electron Devices, vol. 46, no. 1, pp. 173-183, Jan. 1999.
    [28] P. Betak, “Bipolar ESD power clamp in high voltage CMOS based on TCAD device simulation,” in Proc. IEEE Int. Spring Seminar on Electronics Technology, 2009, pp.1-3.
    [29] X. Hong, Z. Du, and K. Gong, “Heat effect in a vertical grounded-base NBJT bipolar junction transistor under ESD stress,” in Proc. Int. Conf. Microwave and Millimeter Wave Technology, 2007.
    [30] M.-D. Ker and K.-C. Hsu, “Overview of on-chip electrostatic discharge protection design with SCR-based devices in CMOS integrated circuits,” IEEE Trans. Device and Materials Reliability, vol.5, no. 2, pp. 235-249, June 2005.
    [31] M.-D. Ker, C.-Y. Lin, and Y.-W. Hsiao, “Overview on ESD protection designs of low-parasitic capacitance for RF ICs in CMOS technologies,” IEEE Trans. Device and Materials Reliability, vol. 11, no. 2, pp. 207-218, June 2011.
    [32] M.-D. Ker and C.-H. Chuang, “ESD protection circuits with novel MOS-bounded diode structures,” Circuits and Systems, 2002, ISCAS 2002. IEEE International Symposium on, vol. 5, pp. V-533-V536, May 2002.
    [33] M.-D. Ker, K.-K. Hung, H. T. -H. Tang, S. -C. Huang, S. -S. Chen, and M. -C. Wang, “Novel diode structures and ESD protection circuits in a 1.8-V 0.15-/spl mu/m partially-depleted SOI salicided CMOS process,” Proc. IEEE Physical and Failure Analysis of Integrated Circuits, 2001, IPFA 2001. Proceedings of the 2001 8th International Symposium on the, pp. 91-96, July 2001.
    [34] C.-Y. Lin and M.-L. Fan, “Optimization on layout style of diode stackup for on-chip ESD protection,” IEEE Trans. Device and Materials Reliability, vol. 14, no. 2, pp. 775-777, June 2014.
    [35] N. Mohan and A. Kumar, “ESD protection design methodology in deep sub-micron CMOS technologies,” Project Report, Course E&CE 730 (Topic 9), VLSI Quality, Reliability and Yield Engineering, Winter 2003.
    [36] M.-D. Ker and W.-L. Wu, “ESD protection design with the low-leakage-current diode string for RF circuits in BiCMOS SiGe process,” Proc. IEEE Electrical Overstress/Electrostatic Discharge Symposium, 2005. EOS/ESD '05, pp. 1-7, Sept. 2005.
    [37] C.-T. Yeh and M.-D. Ker, “Resistor-less power-rail ESD clamp circuit with ultra-low leakage current in 65nm CMOS process,” Reliability Physics Symposium (IRPS), 2013 IEEE International, pp. EL.2.1-EL.2.6, Apr. 2013.
    [38] M.-D. Ker and C.-T. Yeh, “On the design of power-rail ESD clamp circuits with gate leakage consideration in nanoscale CMOS technology,” IEEE Trans. Device and Materials Reliability, vol. 14, no. 1, pp. 536-544, March 2014.
    [39] S. Dong, X. Du, Y. Han, M. Huo, Q. Cui, and D. Huang, “Analysis of 65 nm technology grounded-gate NMOS for on-chip ESD protection applications,” Electronics Letters, vol. 44, no. 19, pp. 1129-1130, Sep. 2008.
    [40] S.-M. Yang, C.-Y. Wu, Y.-J. Lin, W.-C. Lo, G. Sheu, S.-S. Imam, and Aanand, “ESD protection for GGNMOS technology by using TCAD macro-model,“ Proc. IEEE Applied System Innovation (ICASI), 2016 International Conference on, pp. 1-4.
    [41] W. Wang, S. Dong, L. Zhong, J. Zeng, Z. Yu, and Z. Liu, “GGNMOS as ESD protection in different nanometer CMOS process,“ Proc. IEEE Electron Devices and Solid-State Circuits (EDSSC), 2014 IEEE International Conference on, pp. 1-2.
    [42] M. Chang, T.-F. Lu, W.-C. Wang, F.-W. Liu, J.-H. Rao, W.-M. Liao, C.-M. Yang, and J.-P. Lin, “Metal routing induced burn out in GGNMOS ESD protection for low-power DRAM application,“ Proc. Electrical Overstress/Electrostatic Discharge Symposium (EOS/ESD), 2014 36th, pp. 1-8.
    [43] P. Zhang, Y. Wang, S. Jia, and X. Zhang, “A novel multi-finger layout strategy for GGNMOS ESD protection device,“ Proc. ASIC (ASICON), 2011 IEEE 9th International Conference on, pp. 275-278.
    [44] T.-J. Chiu, Y.-C. King, J. Gong, Y.-H. Tsai, and H. Chen, “A resist-protection-oxide transistor with adaptable low-frequency noise for stochastic neuromorphic computation in VLSI,” Proc. IEEE Electron Device Letters, vol. 32, no. 9, pp. 1293-1295, Sept. 2011.
    [45] H.-H. C, M.-D. Ker, J.-C. Wu H.H. Chang and others, "Design of dynamic-floating-gate technique for output ESD protection in deep-submicron CMOS technology,” SOL ST ELEC, 43(2), pp. 375-393, 1999.
    [46] J. Liu, “ESD protection and biomedical integrated circuit co-design techniques,” IEEE Biomedical Circuits and Systems Conference (BioCAS), pp. 405 – 408, 10-12 Nov. 2011.
    [47] F. Lu, R. Ma, Z. Dong, L. Wang, C. Zhang, C. Wang, Q. Chen, X. S. Wang, F. Zhang, C. Li, H. Tang, Y. Cheng, and A. Wang, “A systematic study of ESD protection co-design with high-speed and high-frequency ICs in 28 nm CMOS,“ Proc. IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 63, no. 10, pp. 1746-1757, Oct. 2016.
    [48] W.-Y. Chen, M.-D. Ker, Y.-J. Huang, Y.-N. Jou, and G.-L. Lin, “Measurement on snapback holding voltage of high-voltage LDMOS for latch-up consideration,” in Proc. of IEEE Asia-Pacific conference on Circuits and Systems, 2008, pp. 61-64.
    [49] C.-Y. Lin and M.-L. Fan, “Design of ESD protection diodes with embedded SCR for differential LNA in a 65-nm CMOS process,” in Proc. IEEE Trans. Microwave Theory and Techniques, vol. 62, no. 11, pp. 2723- 2732, Nov. 2014.
    [50] S. Joshi, P. Juliano, E. Rosenbaum, G. Kaatz, and S. Kang, “ESD protection for BiCMOS circuits,” in Proc. IEEE Bipolar/BiCMOS Circuits and Technology Meeting, 2000, pp. 218-221.
    [51] MSP430™ system-level ESD considerations, texas instruments application report, SLAA530–March 2012.
    [52] S. Marum, C. Duvvury, J. Park, A. Chadwick, and A. Jahanzeb, “Protecting circuits from the transient voltage suppressor’s residual pulse during IEC 61000-4-2 stress”, in Proc. EOS/ESD Symp., 2009, pp. 1-10.
    [53] M. Scholz, S.-H. Chen, G. Vandersteen, D. Linten, G. Hellings, M. Sawada, and G. Groeseneken,” Comparison of system-level ESD design methodologies—towards the efficient and ESD robust design of systems,” IEEE Trans. Device and Materials Reliability, vol.13, pp. 213-222, 2013.
    [54] T. Yeoh, “ESD effects on power supply clamps,” in Proc. Int. Symp. On \ Physical and Failure Analysis of Integrated Circuits, 1997, pp. 121-124.
    [55] M. Son and C. Park, “Electrostatic discharge protection devices with series connection using distributed cell-based diodes,” in Proc. Electronics Letters, vol. 50, no. 3, pp. 168-170, Jan. 2014.
    [56] R. Pierco, Z. Li, G. Torfs, X. Yin, J. Bauwelinck, and X. Qiu, “Diode string with reduced clamping-voltage for ESD-protection of RF-circuits,” Electronics Letters, vol. 48, no. 6, pp. 317-318, Mar. 2012.
    [57] S. Voldman, G. Gerosa, V. Gross, N. Dickson, S. Furkay, and J. Slinkman, “Analysis of snubber-clamped diode-string mixed voltage interface ESD protection network for advanced microprocessors,” J. Electrostatics, vol. 38, no. 1-2, pp. 3-31, Oct. 1996.
    [58] T. Maloney and S. Dabral, “Novel clamp circuits for IC power supply protection,” IEEE Trans. Components, Packaging, and Manufacturing Technology, vol. 19, no. 3, pp. 150-161, Jul. 1996.
    [59] M. Ker and W. Lo, “Design on the low-leakage diode string for using in the power-rail ESD clamp circuits in a 0.35-μm silicide CMOS process,” IEEE J. Solid-State Circuits, vol. 35, no. 4, pp. 601-611, Apr. 2000.
    [60] M. Ker, Y. Hsiao, and W. Wu, “ESD-protection design with extra low-leakage-current diode string for RF circuits in SiGe BiCMOS process,” IEEE Trans. Device and Materials Reliability, vol. 6, no. 4, pp. 517-527, Dec. 2006.
    [61] S. Chen, T. Chen, T. Tang, J. Chen, and C. Chou, “Characteristics of low-leakage deep-trench diode for ESD protection design in 0.18-μm SiGe BiCMOS process,” IEEE Trans. Electron Devices, vol. 50, no. 7, pp. 1683-1689, Jul. 2003.
    [62] S. Huang, Y. Chu, C. Kuo, T. Huang, M. Song, and M. Chang, “Low-leakage diode string design without extra circuits for ESD applications,” in Proc. Int. VLSI Technology, Systems and Applications Symp., 2006, pp. 1-4.
    [63] C. Lin, P. Wu, and M. Ker, “Area-efficient and low-leakage diode string for on-chip ESD protection,” IEEE Trans. Electron Devices, vol. 63, no. 2, pp. 531-536, Feb. 2016.
    [64] M. Ker, C. Chuang, and W. Lo, “ESD implantations for on-chip ESD protection with layout consideration in 0.18-μm salicided CMOS technology,” IEEE Trans. Semiconductor Manufacturing, vol. 18, no. 2, pp. 328-337, May 2005.
    [65] K. Chatty, D. Alvarez, M. Abou-Khalil, C. Russ, J. Li, and R. Gauthier, “Investigation of ESD performance of silicide-blocked stacked NMOSFETs in a 45nm bulk CMOS technology,” in Proc. EOS/ESD Symp., 2008, pp. 304-312.
    [66] M. Ker and K. Hsu, “Overview of on-chip electrostatic discharge protection design with SCR-based devices in CMOS integrated circuits,” IEEE Trans. Device and Materials Reliability, vol. 5, no. 2, pp. 235-249, Jun. 2005.
    [67] M. Mergens, C. Russ, K. Verhaege, J. Armer, P. Jozwiak, R. Mohn, B. Keppens, and C. Trinh, “Speed optimized diode-triggered SCR (DTSCR) for RF ESD protection of ultra-sensitive IC nodes in advanced technologies,” IEEE Trans. Device and Materials Reliability, vol. 5, no. 3, pp. 532-542, Sep. 2005.

    下載圖示
    QR CODE