研究生: |
黃淑萍 Shu-Ping Huang |
---|---|
論文名稱: |
台灣三種草蜥之溫度生理及海拔分布之關係 The thermal physiology and altitudinal distribution of three Takydromus lizards in Taiwan |
指導教授: |
杜銘章
Tu, Ming-Chung |
學位類別: |
博士 Doctor |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2008 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 92 |
中文關鍵詞: | 溫度 、海拔 、蜥蜴 、爬蟲類 、地理分布 、移地圈養 |
英文關鍵詞: | temperature, altitude, lizard, reptile, geographic distribution, transplant study |
論文種類: | 學術論文 |
相關次數: | 點閱:192 下載:5 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生物的地理分布範圍可能受到其地理屏障、生物性交互作用 (例如:競爭、寄生、疾病等) 以及非生物環境適合性 (environmental suitability) (例如溫度、溼度、光線因子等) 的共同影響。雖然環境因子是影響生物地理分布的重要因素,其和生物性因子的相對影響程度卻不容易釐清。深入了解那些環境因子影響野生動物的地理分布範圍以及其影響的機制不僅是生態學及演化生物學的重要議題,在我們未來評估環境變遷對其地理分布的衝擊以及對其經營管理也有重要參考價值。
本研究以三種分布在台灣不同海拔範圍的草蜥屬蜥蜴為題,探討環境因子對其海拔區隔分布所扮演的角色。牠們分別是雪山草蜥 (T. hsuehshanensis,海拔分布 > 1800m) 、台灣草蜥 (T. formosanus,海拔分布 < 1500m) (後改名為翠斑草蜥,T. viridipunctatus) 以及蓬萊草蜥 (T. stejnegeri,海拔分布 < 1000m) 。本研究分成兩部分 : 在第一部分,我推測環境溫度可能是造成這些草蜥海拔區隔分布的重要因子。我測量這三種草蜥的高溫耐受度、低溫耐受度及衝刺速度等與生存相關的重要生理特徵,以了解牠們對溫度的耐受範圍以及其具備優良運動表現時的體溫範圍。經由比較物種間生理特徵的差異性以及對照高、低海拔地區野外環境的溫度範圍,我進一步推測環境溫度對這些草蜥的海拔分布範圍的影響程度,這部分研究將分別於第一章至第三章介紹。在第二部分,我針對雪山草蜥進行移地圈養實驗,將其圈養在低海拔地區野外環境下,觀察其生存及生長情形,以推測環境因子對其海拔分布的影響程度,這將於第四章介紹。
在第一章,我研究雪山草蜥對高溫的耐受能力是否是造成其無法分布於低海拔環境的主要生理限制因子。我測量牠的臨界高溫值 (critical thermal maximum) 以及其在三種溫度處理下三個月的存活率。台灣草蜥及蓬萊草蜥則為作為對照組。這三種處理分別為為極高溫組、高溫組及低溫組。其中,極高溫處理及高溫處理是分別將其每日最高溫度設定為低海拔地區夏季時的歷史極高溫以及每日高溫的平均值,日夜溫度變動範圍則設為7-10oC,而低溫處理則設定為相當於高海拔地區的夏季氣溫。結果顯示: (一) 雪山草蜥的臨界高溫值高於低海拔地區的歷史高溫,並且與另兩種草蜥的臨界高溫值沒有顯著差異,(二) 雪山草蜥能在極高溫處理及高溫處理下存活,且其存活率與另兩種草蜥的存活率沒有顯著差異。因此,雪山草蜥不但能短暫忍受低海拔地區所出現的夏季高溫,也能至少存活3個月。我由此推論雪山草蜥對高溫的耐受能力應該不是限制其分布於高海拔地區的生理特徵。
在第二章,我研究台灣草蜥及蓬萊草蜥對低溫的耐受能力是否為造成其無法分布於高海拔地區的主要原因。我測量牠們的臨界低溫值 (critical thermal minimum)以及其在四種恆定低溫 (2 oC、5 oC、10 oC及 15oC) 處理下三個月的存活率。雪山草蜥則作為對照組。結果顯示: (一) 這三種草蜥的臨界低溫值與牠們海拔分布上界呈現正相關,(二) 台灣草蜥及蓬萊草蜥在5oC 處理下仍能有合理的存活率,而5oC相當於高海拔地區冬季時地底50公分深度的溫度。我由上述結果推論台灣草蜥及蓬萊草蜥對低溫的耐受能力應該不是影響牠們現有海拔分布範圍的生理特徵。
在第三章,我測量雪山草蜥的運動表現對溫度的敏感度 (thermal sensitivity) ,以研究其運動表現能力是否在低海拔的氣溫下會受到抑制,進而不利於生存在低海拔地區。我測量其衝刺速度以評估其運動表現能力,實驗蜥蜴分別先以兩種溫度馴養兩週後,再測量其於九種體溫下的衝刺速度。台灣草蜥則作為對照組。結果顯示: (一) 雪山草蜥在低海拔地區的溫度範圍下仍能維持優良的衝刺速度,(二) 當這兩種蜥蜴的體溫落在低海拔地區的氣溫範圍內時,台灣草蜥的衝刺速度顯著大於雪山草蜥的衝刺速度,(三) 這兩種蜥蜴的衝刺速度對溫度的敏感度沒有顯著差異,所以生存在不同海拔的溫度環境下並未驅使牠們的溫度生理產生分化;以及 (四) 馴化溫度處理對這兩種蜥蜴衝刺速度的表現沒有顯著影響。基於上述結果,我認為雪山草蜥的衝刺速度也不是限制其分布在高海拔地區的主要因素。
在第四章,我將雪山草蜥自高海拔地區移至台北市立動物園,並圈養在戶外的圈養場內為期一年。在實驗期間,我供給其足夠飲水、食物及遮蔽物,並隔絕或移除其潛在的天敵。我每週測量及記錄其生存率、體重變化及健康情形。台灣草蜥則作為對照組。結果顯示: (一) 雪山草蜥在6個月內能維持合理的存活率,並且其與台灣草蜥的存活率沒有顯著差異,(二)雪山草蜥在第9個月及第12個月時的存活率分別僅剩下 41.9% 及19.3%,其值顯著低於台灣草蜥同時期的存活率 (80.6 %),(三) 雪山草蜥在夏季的生長狀況良好,體重有增加現象。然而,其在冬季時無法成功蛻皮,並且有些個體有腳趾潰爛及眼疾等現象。相較之下,台灣草蜥則在冬季未顯現蛻皮跡象,具有上述不健康狀況的個體數量顯著較少。基於上述這些結果,我認為低海拔地區應該對雪山草蜥的生存不利,並且其冬季的環境因子極可能扮演重要角色。但由於這個實驗僅維持一年,仍需做更深入一歩的研究才能證實這項推測。
综言之,低溫耐受度及高溫耐受度應該不是限制三種草蜥海拔區隔的主要因素。對雪山草蜥而言,低海拔環境溫度對其運動表現並未產生抑制效應,所以溫度因子並未透過這幾項生理特徵影響牠們的海拔分布,未來若能檢測其他重要的生理特徵將更能釐清溫度因子對這三種草蜥海拔分布的影響程度。雪山草蜥在低海拔地區野外圈養場的存活狀況不佳,這可能與低海拔地區的氣候因素及微生物因素有關,這項推測仍需進一步研究證實。
Understanding the factors that determine a species’ range is a central objective in ecology and evolutionary biology. It also provides important information in predicting species distributions in response to environmental changes and future conservation. This thesis examined the effect of environmental factor, mainly on abiotic factors, on three Takydromus lizards living at different altitudinal ranges in Taiwan. These three Takydromus lizards are the high mountainous T. hsuehshanensis (> 1800m in altitude), T. formosanus (recently revised as T. viridipunctatus, < 1500m in altitude) and lowland T. stejnegeri (< 500m). This study had two main objectives: one was to investigate the difference in thermal physiology and its role on altitudinal distributions of these three species, another was focusing on the mountainous T. hsuehshanensis to investigate whether it was able to live well under the lowland environment. To achieve the first objective I analyzed three thermal physiological traits of these three species: the heat thermal tolerance, the cold thermal tolerance, and the sprint speed. To achieve the second objective I conducted a transplant experiment on the mountainous T. hsuehshanensis. I moved it to the semi-natural outdoor enclosures in lowland areas and recorded its growth and survival rates during one year period.
In chapter 1, I investigated whether heat tolerance was a crucial factor for the altitudinal distributions of T. hsuehshanensis. T. formosanus and T. stejnegeri were served as comparative groups. I measured and compared their critical thermal maximum (CTMax) and survival rates under 3 fluctuating daily temperature treatments over a 3 month period. Two of the 3 temperature treatments, the extremely high temperature (EH treatment) and the average temperature (H treatment), were set to approximate lowland summer temperatures. The third one was set to approximate the cool temperatures in mountain areas (C treatment). The results showed that (1) CTMax of T. hsuehshanensis was higher than the summer temperature in the lowland areas, but was not significantly lower than those of the other two lowland species, (2) T. hsuehshanensis survived the H and EH treatments for over a 3 month period and its survival rate was not significantly lower than that of the other two lowland species. Therefore, T. hsuehshanensis was not only able to tolerate high temperatures mimicking lowland areas for a short period of time, but also for a much longer period of time. I concluded that the heat tolerance of T. hsuehshanensis is not a crucial factor limiting its current altitudinal distribution.
In chapter 2, I investigated whether cold tolerance was an important limiting factor for the current altitudinal distributions of two Takydromus lizards, T. formosanus and the lowland-dwelling T. stejnegeri in Taiwan. I measured their critical thermal minimum (CTMin) and 3-month survival rates in 4 cold treatments, and compared these with T. hsuehshanensis. The results indicated that (1) both the CTMin and prolonged cold tolerance were correlated with their upper limit of altitudinal distributions as predicted and (2) T. formosanus and T. stejnegeri had reasonable survival rates at temperatures that were lower than the underground temperature of high altitudinal areas. I concluded that although cold tolerance was correlated with altitudinal distribution, it is not a crucial factor limiting T. formosanus and T. stejnegeri in higher altitudes.
In chapter 3, I investigated the impact of environmental temperature on altitudinal distributions of T. hsuehshanensis by examining its thermal sensitivity of locomotor performance. Its sprint speed was measured at nine body temperatures after two weeks acclimation at two different temperatures. The same measurement was performed on T. formosanus. The results indicated that (1) T. hsuehshanensis was capable of maintaining normal locomotor performance within a body temperature range approximating summer temperatures of lowland areas; (2) T. formosanus was able to run significantly faster than T. hsuehshanensis in body temperatures range of 20oC to 40 oC; (3) these two species did not differ in thermal sensitivity of locomotor performance; and (4) temperature acclimation did not affect the locomotor performance of these two species. I concluded that locomotor performance was not a factor limiting the distribution of T. hsuehshanensis to lowland areas.
In chapter 4, I checked the survivorship and growth rate of T. hsuehshanensis in semi-natural enclosures in a lowland area during one year period. I provided them with plenty of water, food, and shelters, and removed/isolated the potential predators. The results indicated that (1) T. hsuehshanensis could maintain a reasonable survival rate at least within the first 6 months, (2) at the 9th and 12th month, the survivorship of T. hsuehshanensis declined to 41.9% and 19.3% respectively, which was significantly lower than those of the T. formosanus (80.6% at both the 9th and 12th month), and (3) in the summer T. hsuehshanensis was able to survive well and to increase their body weights; while in the winter it remained active but was not able to perform a normal shedding and was detected to have fester toes and eye disease. Compared to T. hsuehshanensis, T. formosanus did not shed their skin in the winter and had significantly less individuals having fester toes and eye diseases. According to these results, I concluded that the lowland area was not a suitable environment for T. hsuehshanensis to establish population in its recent state. I also inferred that the environment in winter had a negative effect on year-round successful survival of T. hsuehshanensis in lowland areas. However, since this experiment lasted for only one year, further investigations are needed to confirm this conclusion.
In summery, I have demonstrated that thermal tolerances were not crucial physiological factors that limited the altitudinal distributions of these 3 species. The locomotion capacity of T. hsuehshanensis was not reduced in the temperatures approximating lowland temperatures. Further examination on other important traits will help to clarify the temperature effect on the altitudinal distributions of these three species. T. hsuehshanensis was not able to survive well in the outdoor enclosures in lowland areas, which may be due to the effects of climate or infective micro-organism in lowland area. Further investigations are needed to support my interpretation.
References
Chapter 1
Angilletta, M.J., 2001. Thermal and physiological constraints on energy assimilation in a widespread lizard (Sceloporus undulatus). Ecology 82, 3044-3056.
Bennett, A.F., 1980. The thermal dependence of lizard behaviour. Anim. Behav. 28, 752-762.
Brattstrom, B.H., 1965. Body temperatures of reptiles. Amer. Midland Nat. 73, 376-422.
Brown JH, MV Lomolino. 1998. Biogeography. Sunderland, MA: Sinauer Associates.
Brown JH, GC Stevens, DM Kaufman. 1996. The geographic range: size, shape, boundaries, and internal structure. Annu. Rev. Ecol. Syst 27, 597-623.
Caughley G, D Grice, R Barker, B Brown. 1988. The edge of the range. J. Anim. Ecol. 57, 771–785.
Christian KA, CR Tracy. 1981. The effect of thermal environment on ability of hatching Galapagos land iguanas to avoid predation during dispersal. Oecologia 49, 218-223.
Dobzhansky TH. 1950. Evolution in the tropics. American Scientist 38, 209-221.
Graham JB, I Rubinoff, MK Hecht. 1971. Temperature physiology of sea snake Pelamis platurus: an index of its colonization potential in Atlantic Ocean. Proc. Nat. Acad. Sci. 68, 1360-1363.
Greer AE. 1980. Critical thermal maximum temperatures in Australian scincid lizards: their ecological and evolutionary significance. Aust. J. Zool. 28, 91-102.
Jablonski D. 1987. Heritability at the Species Level: Analysis of Geographic Ranges of Cretaceous Mollusks. Science 238, 360-363.
Kaufmann JS, AF Bennett. 1989. The effect of temperature and thermal acclimation on locomotor performance in Xantusia vigilis, the desert night lizard. Physiol. Zool. 62, 1047-1058.
Krebs CJ. 2001. Ecology: The Experimental Analysis of Distribution and Abundance. San Francisco: Benjamin Cummings, 2001.
Lue KY, SM Lin. 2008. Two new cryptic species of Takydromus
Chapter 2
Adolph, S.C., 1990. Influence of behavioural thermoregulation on microhabitat use by Sceloporus lizards. Ecology 71, 315-327.
Angilletta, M.J., 2001. Thermal and physiological constraints on energy assimilation in a widespread lizard (Sceloporus undulatus). Ecology 82, 3044-3056.
Avery, R.A., 1982. Field studies of body temperatures and thermoregulation. In: Gans, C., Pough, F.H. (Eds.), Biology of the Reptilia, Vol. 12. Academic Press, New York, pp. 93-146.
Bennett, A.F., 1980. The thermal dependence of lizard behaviour. Anim. Behav. 28, 752-762.
Bouverot, P., 1985. High altitude. In: Bouverot, P. (Ed.), Adaptation to Altitude-hypoxia in Vertebrates. Springer-Verlag Berlin Heidelberg, pp. 6.
Brattstrom, B.H., 1963. A preliminary review of the thermal requirements of amphibians. Ecology 44, 238-255.
Brattstrom, B.H., 1965. Body temperatures of reptiles. Amer. Midland Nat. 73, 376-422.
Brattstrom, B.H., 1968. Thermal acclimation in anuran amphibians as a function of latitude and altitude. Comp. Biochem. Physiol. 24, 93-111.
Brattstrom, B.H., 1970a. Amphibians. In: Whitlow, G.C. (Ed.), Comparative Physiology of Thermoregulation, Vol. 1. Invertebrates and Nonmammalian Vertebrates. Academic Press, New York, pp. 135-166.
Brattstrom, B.H., 1970b. Thermal acclimation in Australian amphibians. Comp. Biochem. Physiol. 35, 69-103.
Brattstrom, B.H., 1971. Critical thermal maxima of some Australian skinks. Copeia 1971, 554-557.
Brattstrom, B., Regal, P., 1965. Rate of thermal acclimation in the Mexican salamander Chiropterotriton. Copeia 1965, 514-515.
Chen, H.L., Yong, M.Y., Weng, Y.S., Hou, P.L., 2004. Why Bufo melanostictus can not disperse to high altitude area? Annual Symposium on Biology, Stream, Behaviour and Ecology. Taipei, Taiwan.
Christian, K.A., Tracy, C.R., 1981. The effect of thermal environment on ability of hatching Galapagos land iguanas to avoid predation during dispersal. Oecologia 49, 218-223.
Cowles, R.B., Bogert, C.M., 1944. A preliminary study of the thermal requirements of desert reptiles. Bull. Am. Mus. Nat. Hist. 83, 261-296.
Delson, J., Whitford, W.G., 1973. Critical thermal maximum in several life history stages in desert and montane populations of Ambystoma tigrinum. Herpetologica 29, 352-355.
Gillis, R. 1991. Thermal biology of two populations of red chinned lizards (Sceloporus undulates erythrocheilus) living in different habitats in south central Colorado. J. Herpetol. 25, 18-23.
Graham, J.B., Rubinoff, I., Hecht, M.K., 1971. Temperature physiology of sea snake Pelamis platurus: an index of its colonization potential in Atlantic Ocean. Proc. Nat. Acad. Sci. 68, 1360-1363.
Greer, A.E., 1980. Critical thermal maximum temperatures in Australian scincid lizards: their ecological and evolutionary significance. Aust. J. Zool. 28, 91-102.
Gvoždík, L., Castilla, A.M., 2001. A comparative study of preferred body temperatures and critical thermal tolerance limits among populations of Zootoca vivipara (Squamata: Lacertidae) along and altitudinal gradient. J. Herpetol. 35, 486-492.
Heatwole, H.N., Mercado, N., Ortiz, E., 1965. Comparison of critical thermal maxima of two species of Puerto Rican frogs of the genus Eleutherodactylus. Physiol. Zool. 38,1-8.
Hertz, P.E., 1979. Sensitivity to high temperature in three west grass anoles (Sauria, Iguanidae), with a review of heat sensitivity in the genus Anolis. Comp. Biochem. Physiol. 63A, 217-222.
Hertz, P.E., 1981. Adaptation to altitude in two West Indian anoles (Reptilia: Iguanidae): field thermal biology and physiology. J. Zool. Lond. 195, 25-37.
Hertz, P.E., Arce-Hernandez, A., Ramirez-Vazquez, J., Tirado-Rivera, W., Vazquez-Vives L., 1979. Geographical variation of heat sensitivity and water loss rates in the tropical lizard, Anolis gundlachi. Comp. Biochem. Physiol. 62A, 947-953.
Hertz, P. E., Huey, R.B., 1981. Compensation for altitudinal changes in the thermal environment by some Anolis lizards on Hispaniola. Ecology 62, 515-521.
Hertz, P.E., Huey, R.B., Stevenson, R.D., 1993. Evaluating temperature regulation by field-active ectotherms: the fallacy of inappropriate question. Am. Nat. 142, 796-818.
Hertz, P. E., Nevo, E., 1981. Thermal biology of four Israeli agamid lizards in early summer. Israel J. Zool. 30, 190-210.
Hillyard, S.D., 1981. Respiration and cardiovascular adaptations of amphibians and reptiles to altitudes. In: Horvath, S.M., Yousef, M.K. (Eds.), Environmental Physiology: Aging, Heat and Altitude. Elsevier/North- Holland, New York, pp. 362-377.
Hoppe, D.M., 1978. Thermal tolerance in tadpoles of the chorus frog Pseudacris triseriata. Herpetologica 34, 318-321.
Howard, J.H., Wallace, R.L., 1983. Critical thermal maxima in populations of Ambystoma macrodactylum from different elevations. J. Herpetol. 17, 400-402.
Huang, S.P., Hsu, Y., Tu, M.C., 2006. Thermal tolerance and altitudinal distribution of two Sphenomorphus lizards in Taiwan. J. Therm. Biol. 31, 378-385.
Huang, S.M., Huang, S.P., Chen, Y.H., Tu, M.C., 2007. Thermal tolerance and altitudinal distribution of three Trimeresurus snakes in Taiwan. Zool. Studies. 46, 592-599.
Huang, S.P., Shiau, T.W., Tu, M.C., 2005. Population size and habitat use of Taiwan alpine skink, Sphenomorphus taiwanensis, at Tatachia area in central mountain range, Taiwan. BioFormosa 40, 68-75.
Huey, R.B., 1974. Behavioral thermoregulation in lizards: importance of associated cost. Science 184, 1001-1003.
Huey, R.B., 1982. Temperature, physiology and ecology of reptiles. In: Gans, C., Pough, F.H. (Eds.), Biology of the Reptilia. Vol. 12. Academic Press, London, pp. 25-91.
Huey, R.B., Kingsolver, J.G., 1989. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4, 131-135.
Huey, R.B., Pianka, E.R., 1977. Seasonal variation in thermoregulatory behaviour and body temperature of diurnal Kalahari lizards. Ecology 58, 1066-1075.
Huey, R.B., Stevenson, R.D., 1979. Integrating physiology and ecology of ectotherms: a discussion of approaches. Am. Zool. 19, 357-366.
Huey, R.B., Webster, T.P., 1976. Thermal biology of Anolis lizards in a complex fauna: the cristatellus group on Puerto Rico. Ecology 57, 985-995.
Hutchison, V.H., 1961. Critical thermal maxima in salamanders. Physiol. Zool. 2, 92-125.
Hutchison, V.H., Rowland, S.D., 1974. Thermal acclimation and tolerance in the mudpuppy, Necturus maculosus. J. Herpetol. 9, 367-368.
Jayne, B.C., Bennett, A.F., 1990. Selection on locomotor performance capacity in a natural population of garter snake. Evolution 44, 1204-229.
Kaplan, E.L., Meier, P., 1958. Nonparametric estimation from incomplete data. J. Amer. Statist. Assoc. 53, 457-481.
Kaufmann, J.S., Bennett, A.F., 1989. The effect of temperature and thermal acclimation on locomotor performance in Xantusia vigilis, the desert night lizard. Physiol. Zool. 62, 1047-1058.
Krebs, C.J., 1994. The experimental analysis of distribution and abundance. In: Krebs, C.J. (Ed.), Ecology. Addison-Wesley Publishing Co., Oxford, New York, pp. 93-116.
Licht, P., 1965. The relation between preferred body temperatures and testicular heat sensitivity in lizards. Copeia 1965, 428-436.
Licht, P., 1971. Regulation of the annual testis cycle by photoperiod and temperature in the lizard Anolis carolinensis. Ecology 52, 240-252.
Lourdais, O., Shine, R., Bonnet, X., Guillon, M., Naulleau, G., 2004. Climate affects development in a viviparous snake, Vipera aspis. Oikos 104, 551-560.
Lowe, C.H., Vance, V.J., 1955. Acclimation of the critical thermal maximum of reptile Urosaurus ornatus. Science 122, 73-74.
Lue KY, SM Lin. 2008. Two new cryptic species of Takydromus (Squamata: Lacertidae) from Taiwan. Herpetologica. (in press)
Lue, K.Y., Tu, M.C., Hsiang, K.S., 1999. A Field Guide to Amphibians and Reptiles of Taiwan. S. W. A. N. press, Taiwan, pp. 297.
Lutterschmidt, W.I., Hutchison, V.H., 1997a. The critical thermal maximum: data to support the onset of spasm as the definitive endpoint. Can. J. Zool. 75, 1553-1560.
Lutterschmidt, W.I., Hutchison, V.H., 1997b. The critical thermal maximum: history and critique. Can. J. Zool. 75, 1561-1574.
Miller, K., Packard, G.C., 1974. Critical thermal maximum: ecotypic between montane and piedmont chorus frogs (Pseudacris triseriata, Hylidae). Experientia 30, 355-356.
Miller, K., Packard, G.C., 1977. An altitudinal cline in critical thermal maxima of chorus frogs (Pseudacris triseriata). Am. Nat. 111, 267-277.
Navas, C.A., 1996. Implications of microhabitat selection and patterns of activity on the thermal ecology of high elevation neotropical anurans. Oecologia 108, 617-626.
Navas, C.A., 1997. Thermal extremes at high elevations in the Andes: physiological ecology of frogs. J. Therm. Biol. 22, 467-477.
Norušis, M.J., 2004. Linear Mixed Models. In: SPSS 13.0 Advanced Statistical Procedures Companion. Prentice Hall, Inc. New Jersey, pp.199-250.
Singer, J.D., Willett, J.B., 2003. Doing data analysis with the multilevel model for change. In: Applied Longitudinal Data Analysis. Oxford University Press, New York, pp.75-137.
Spellerberg, I. F., 1972a. Temperature tolerance of southeast Australian reptiles examined in relation to reptile thermoregulatory behaviour and distribution. Oecologia 9, 23-46.
Spellerberg, I. F., 1972b. Thermal Ecology of allopatric lizards (Sphenomorphus) in southeast Australia. I. The environment and lizard critical temperatures. Oecologia 9, 371-383.
Stuart, L.C., 1951. The distributional implications of temperature tolerances and hemoglobin values in the toads Bufo marinus (Linnaeus) and Bufo bocourti Brocchi. Copeia 1951, 220-229.
van Berkum, F.H., 1988. Latitudinal patterns of the thermal sensitivity of sprint speed in lizards. Am. Nat. 132, 327-343
Wei, H.L., Hou, P.C., 2004. The distributional implications of thermal tolerance in the toad Bufo melanostictus. Annual Symposium on Biology, Stream, Behaviour and Ecology. Taipei, Taiwan.
Wu, C.S., Kam, Y.C., 2005. Thermal tolerance and thermoregulation by Taiwanese Rhacophorid tadpoles (Buergria japonica) living in geothermal hot springs and streams. Herpetologica 61, 35-46.
Chapter 3
Angilletta MJ. 2001. Thermal and physiological constraints on energy assimilation in a widespread in a widespread lizard (Sceloporus undulatus). Ecology 82: 3044-3056.
Bennett AF. 1980. The thermal dependence of lizard behaviour. Anim. Behav. 28: 752-762.
Brattstrom BH. 1965. Body temperatures of reptiles. Am. Midl. Nat. 73: 376-422.
Brattstrom BH. 1968. Thermal acclimation in anuran amphibians as a function of latitude and altitude. Comp. Biochem. Physiol. 24A: 93-111.
Brattstrom BH. 1970a. Amphibians. In GC Whitlow, ed. Comparative physiology of thermoregulation. Vol. 1. Invertebrates and nonmammalian vertebrates. New York: Academic Press, pp. 135-166.
Brattstrom BH. 1970b. Thermal acclimation in Australian amphibians. Comp. Biochem. Physiol. 35: 69-103.
Brattstrom BH. 1979. Amphibian temperature regulation studies in the field and laboratory. Am. Zool. 19: 345-356.
Brattstrom BH, P Regal. 1965. Rate of thermal acclimation in the Mexican salamander Chiropterotriton. Copeia 1965: 514-515.
Campbell JA, A Solórzano. 1992. The distribution, variation, and natural history of the middle American montane pitviper, Porthidium godmani. In JA Campbell, Brodie ED Jr, eds. Biology of the Pitvipers. Tyler, Texas: Selva Tyler Press, pp. 223-250.
Christian KA, CR Tracy. 1981. The effect of thermal environment on ability of hatching Galapagos land iguanas to avoid predation during dispersal. Oecologia 49: 218-223.
Cowles RB, CM Bogert. 1944. A preliminary study of the thermal requirements of desert reptiles. Bull. Am. Mus. Nat. Hist. 83: 265-296.
Gaines SD, WR Rice. 1990. Analysis of biological data when there are ordered expectations. Am. Nat. 135: 310-317.
Gaston KJ. 2003. The structure and dynamics of geographic ranges. Oxford, UK: Oxford Univ. Press.
Gorman GC, S Hillman. 1977. Physiological basis for climate niche partitioning in two species Puerto Rican Anolis (Reptilia, Lacertilia, Iguanidae). J. Herpetol. 11: 337-340.
Graham JB, I Rubinoff, MK Hecht. 1971. Temperature physiology of sea snake Pelamis platurus: an index of its colonization potential in Atlantic Ocean. Proc. Nat. Acad. Sci. 68: 1360-1363.
Grant BW, AE Dunham. 1990. Elevational covariance in environmental constraints and life histories of desert lizard Sceloporus merriami. Ecology 71: 1765-1776.
Gvoždík L, AM Castilla. 2001. A comparative study of preferred body temperatures and critical thermal tolerance limits among populations of Zootoca vivipara (Squamata: Lacertidae) along an altitudinal gradient. J. Herpetol. 35: 486-492.
Heatwole H, TH Lín, E Villalón, A Muñiz, A Matta. 1969. Some aspects of the thermal ecology of Puerto Rican anoline lizards. J. Herpetol. 3: 65-77.
Hertz PE, RB Huey. 1981. Compensation for altitudinal changes in the thermal environment by some Anolis lizards on Hispaniola. Ecology 62: 515-521.
Huang SP, Y Hsu, MC Tu. 2006. Thermal tolerance and altitudinal distribution of two Sphenomorphus lizards in Taiwan. J. Therm. Biol. 31: 378-385.
Huang SM, SP Huang, YH Chen, MC Tu. 2007. Thermal tolerance and altitudinal distribution of three Trimeresurus snakes (Viperidae: Crotalinae) in Taiwan. Zool. Stud. 46: 592-599.
Huang SP, MC Tu. 2008. Heat tolerance and altitudinal distribution of a mountainous lizard, Takydromus hsuehshanensis, in Taiwan. J. Therm. Biol. 33: 48-56.
Huey RB. 1974. Behavioral thermoregulation in lizards: importance of associated cost. Science 184: 1001-1003.
Huey RB. 1982. Temperature, physiology and ecology of reptiles. In C Gans, FH Pough, eds. Biology of Reptilia. Vol. 12. London: Academic Press, pp. 25-91.
Huey RB, ER Pianka. 1977. Seasonal variation in thermoregulatory behaviour and body temperature of diurnal Kalahari lizards. Ecology 58: 1066-1075.
Huey RB, RD Stevenson. 1979. Integrating physiology and ecology of ectotherms: a discussion of approaches. Am. Zool. 19: 357-366.
Hutchison VH. 1961. Critical thermal maxima in salamanders. Physiol. Zool. 2: 92-125.
Hutchison VH, MR Ferrance. 1970. Thermal tolerances of Rana pipiens acclimated to daily temperature cycles. Herpetologica 26: 1-8.
Jacobson ER, WG Whitford. 1970. The effect of acclimation on physiological responses to temperature in the snakes, Thamnophis proximus and Natrix rhombifera. Comp. Biochem. Physiol. 35 A: 439-449.
Jayne BC, AF Bennett. 1990. Selection on locomotor performance capacity in a natural population of garter snake. Evolution 44: 1204-1229.
Kaplan EL, P Meier. 1958. Nonparametric estimation from incomplete data. J. Am. Stat. Assoc. 53: 457-481.
Kaufmann JS, AF Bennett. 1989. The effect of temperature and thermal acclimation on locomotor performance in Xantusia vigilis, the desert night lizard. Physiol. Zool. 62: 1047-1058.
Kour EL, VH Hutchison. 1970. Critical thermal tolerances and heating and cooling rates of lizards from diverse habitats. Copeia 1970: 219-229.
Krebs CJ. 1994. The experimental analysis of distribution and abundance. In CJ Krebs, ed. Ecology. Oxford, UK: Addison-Wesley, pp. 93-116.
Lowe CH, VJ Vance. 1955. Acclimation of the critical thermal maximum of reptile Urosaurus ornatus. Science 122: 73-74.
Lue KY, SM Lin. 2008. Two new cryptic species of Takydromus (Squamata: Lacertidae) from Taiwan. Herpetologica. (in press)
Lue KY, MC Tu, KS Hsiang. 1999. A field guide to amphibians and reptiles of Taiwan. Taipei, Taiwan: SWAN Press.
Navas CA. 1996. Metabolic physiology, locomotor performance, and thermal niche breadth in neotropical anurans. Physiol. Zool. 69: 1481-1501.
Navas CA. 2003. Herpetological diversity along Andean elevational gradients: links with physiological ecology and evolutionary physiology. Comp. Biochem. Physiol. 133A: 469-485.
Pough F. 1980. The advantages of ectothermy for tetrapods. Am. Nat. 115: 92-112.
Rice WR, SD Gaines. 1994. Extending nondirectional heterogeneity test to evaluate simply ordered alternative hypotheses. Proc. Nat. Acad. Sci. 91: 225-226.
Smith GR, RE Ballinger. 1994. Temperature relationships in the high-altitude viviparous lizard, Sceloporus jarrovi. Am. Midl. Nat. 131: 181-189.
Spellerberg IF. 1972. Temperature tolerance of southeast Australian reptiles: examined in relation to reptile thermoregulatory behaviour and distribution. Oecologia 9: 23-46.
Spellerberg IF. 1973. Critical minimum temperatures of reptiles. In W Weister ed. Effects of temperature on ectothermic organisms. Berlin: Springer, pp. 239-247.
Stuart LC. 1951. The distributional implications of temperature tolerances and hemoglobin values in the toads Bufo marinus (Linnaeus) and Bufo bocourti Brocchi. Copeia 1951: 220-229.
van Berkum FH. 1988. Latitudinal patterns of the thermal sensitivity of sprint speed in lizards. Am. Nat. 132: 327-343.
van Damme R, D Bauwens, AM Castilla, RF Verheyen. 1989. Altitudinal variation of the thermal biology and running performance in the lizard Podarcis tiliguerta. Oecologia 80: 516-524.
van Damme R, D Bauwens, RF Verheyen. 1990. Evolutionary rigidity of thermal physiology: the case of the cool temperate lizard Lacerta vivipara. Oikos 57: 61-67.
Wei HL, PC Hou. 2004. The distribution implications of the thermal tolerance in the toad Bufo melanostictus. 2004 Annual Symposium on Biology, Stream, Behavior and Ecology. Taipei, Taiwan.
Wilson MA, AC Echternacht. 1987. Geographic variation in the critical thermal minimum of the green anole, Anolis carolinensis (Sauria: Iguanidae), along a latitudinal gradient. Comp. Biochem. Physiol. 87A: 757-760.
Wu CS, Kam YC. 2005. Thermal tolerance and thermoregulation by Taiwanese Rhacophorid tadpoles (Buergria japonica) living in geothermal hot springs and streams. Herpetologica 61: 35-46.
Chapter 4
Adams NA, DL Claussen, J Skillings. 1989. Effects of temperature on voluntary locomotion of the eastern box turtle, Terrapene carolina Carolina. Copeia 1989: 905-915.
Arnold SJ. 1983. Morphology, performance and fitness. Am. Zool. 23: 347-361.
Avery RA. 1982. Field studies of body temperatures and thermoregulation. In C Gans, FH Pough eds. Biology of the Reptilia, vol. 12. Academic Press, London. pp. 93-146.
Beddow TA, JLV Leeuwen, IA Johnston. 1995. Swimming kinematics of fast starts are altered by temperature acclimation in the marine fish Myoxocephalus scorpius. J. Exp. Biol. 198: 203-208.
Behler J. 1979. The Audubon Society Feild Guide to North American Reptiles and Amphibians. New York: Alfred A. Knopf, Inc.
Bennett AF. 1980. The thermal dependence of lizard behavior. Anim. Behav. 28: 752-762.
Beuchat CA, FH Pough, MM Stewart. 1984. Response to simultaneous dehydration and thermal stress in 3 species of Puerto Rican frog. J. Comp. Physiol. B 153: 579-587.
Bogert CM. 1949. Thermal regulation in reptiles, a factor in evolution. Evolution 3: 195-211.
Booth DT. 2006. Influence of incubation temperature on hatching phenotype in reptiles. Physiol. Biochem. Zool. 79: 274-281.
Brattstrom BH. 1965. Body temperatures of reptiles. Amer. Midland Nat. 73: 376-422.
Chen YH. 2008. Temperature effect on embryos and hatchlings in high altitudinal grass lizard, Takydromus hsuehshanensis. Master Thesis. National Taiwan Normal University. Taipei, Taiwan.
Christian KA, CR Tracy. 1981. The effect of the thermal environment on the ability of hatchling Galapagos land iguanas to avoid predation during dispersal. Oecologia 49: 218-223.
Crowley SR. 1985. Thermal sensitivity of sprint-running in the lizard Sceloporus undulatus: support for a conservative view of thermal physiology. Oecologia 66: 219-225.
Else PL, Bennett AF. 1987. The thermal dependence of locomotor performance and muscle contractile function in the salamander Ambystoma tigrinum nebulosum. J. Exp. Biol. 128: 219-234.
Feder ME. 1986. Effect of thermal acclimation on locomotor energetics and locomotor performance in a lungless salamander Desmognathus ochrophaeus. J. Exp. Biol. 121: 271-284.
Graham JB, I Rubinoff, MK Hecht. 1971. Temperature physiology of sea snake Pelamis platurus: an index of its colonization potential in Atlantic Ocean. Proc. Nat. Acad. Sci. 68: 1360-1363.
Greer AE. 1980. Critical thermal maximum temperatures in Australian scincid lizards: their ecological and evolutionary significance. Aust. J. Zool. 28: 91-102.
Heatwole H, TH Lin, E Villalón, A Muñiz, A Matta. 1969. Some aspects of the thermal ecology of some Puerto Rican anoline lizards. J. Herpetol. 3: 65-77.
Hertz PE. 1981. Adaptation to altitude in two West Indian anoles (Reptilia: Iguanidae): field thermal biology and physiology. J. Zool. Lond. 195: 25-37.
Hertz PE, RB Huey. 1981. Compensation for altitudinal changes in the thermal environment of some Anolis lizards on Hispaniola. Ecology 62:515-21.
Hertz PE, RB Huey, E Nevo. 1983. Homage to Santa Anita: thermal sensitivity of sprint speed in agamid lizards. Evolution 37: 1075-1084.
Hillyard SD. 1981. Respiration and cardiovascular adaptations of amphibians and reptiles to altitudes. In SM Horvath, MK Yousef eds. Environmental Physiology: Aging, Heat and Altitude. Elsevier/ North-Holland, New York, pp. 362-377.
Huang SP, Y Hsu, MC Tu. 2006. Thermal tolerance and altitudinal distribution of two Sphenomorphus lizards in Taiwan. J. Therm. Biol. 31: 378-385.
Huang SP, MC Tu. 2008a. Cold tolerance and altitudinal distribution of Takydromus lizards in Taiwan. Zool. Studies. 47: 438-444.
Huang SP, MC Tu. 2008b. Heat tolerance and altitudinal distribution of a mountainous lizard, Takydromus hsuehshanensis, in Taiwan. J. Therm. Biol. 33: 48-56.
Huey RB. 1974. Behavioral thermoregulation in lizards: importance of associated cost. Science 184: 1001-1003.
Huey RB. 1982. Temperature, physiology, and the ecology of reptiles. In C Gans, FH Pough, eds. Biology of the Reptilia. Vol. 12. Academic Press, New York. pp. 25-74.
Huey RB, JG Kingsolver. 1989. Evolution of thermal sensitivity of ectotherm performance. Trends Ecol. Evol. 4: 131-135.
Huey RB, PE Hertz, B Sinervo. 2003. Behavioral drive versus behavioral inertia in evolution: a null model approach. Amer. Natur. 161: 357-366.
Huey RB, ER Pianka. 1977. Seasonal variation in thermoregulatory behavior and body temperature of diurnal Kalahari lizards. Ecology 58: 1066-1075.
Huey RB, RD Stevenson. 1979. Integrating thermal physiology and ecology of ectotherms: a discussion of approaches. American Zoologist 19: 357-366.
Husak JF, SF Fox, MB Lovern, RA Van Den Bussche. 2006. Faster lizards sire more offspring: sexual selection on whole-animal performance. Evolution 60: 2122-2130.
Hutchison VH, RK Dupre. 1992. Thermoregulation. In ME Feder, WW Burggren, eds. Environmental Physiology of the Amphibians. The University of Chicago Press, Chicago. pp. 206-249.
Lue KY, MC Tu, KS Hsiang. 1999. A Field Guide to Amphibians and Reptiles of Taiwan. S.W.A.N. Press, Taiwan.
Johnson TP, AF Bennett. 1995. The thermal acclimation of burst escape performance in fish: An integrated study of molecular and cellular physiology and organismal performance. J. Exp. Biol. 198: 2165-2175.
Jayne BC, AF Bennett. 1990. Selection on locomotor performance capacity in a natural population of garter snakes. Evolution 44: 1204-1229.
Kaufmann JS, AF Bennett. 1989. The effect of temperature and thermal acclimation on locomotor performance in Xantusia vigilis, the desert night lizard. Physiol. Zool. 62: 1047-1058.
Kennedy JP. 1958. Sleeping habits of the eastern fence lizard, Sceloporus undulatus hyacinthinus (Sauria Iguanidae). The Southwest. Nat. 3: 90-93.
Krebs CJ. 1994. The experimental analysis of distribution and abundance. In CJ Krebs, (Ed.), Ecology. Addison-Wesley Publishing Co., Oxford, New York, pp. 93-116.
Knowles TW, PD Weigl. 1990. Thermal dependence of anuran burst locomotor performance. Copeia 1990: 796-802.
Londos PL, RJ Brooks. 1988. Effect of thermal acclimation on locomotory performance curves in the toad, Bufo woodhousii woodhousii. Copeia 1988: 26-32.
Marvin GA. 2003. Aquatic and terrestrial locomotor performance in a semiaquatic Plethodontid salamander (Pseudotriton ruber): influence of acute temperature, thermal acclimation, and body size. Copeia 2003: 704-713.
McCullough EC, WP Portor. 1971. Computing clear day solar radiation spectra for the terrestrial ecological environment. Ecology 53: 1008-1015.
Navas CA. 1996. Metabolic physiology, locomotor performance, and thermal niche breadth in neotropical anurans. Physiol. Zool. 69: 1481-1501.
Packard GC, MJ Packard. 1988. The physiological ecology of reptilian eggs and embryos. In C Gans, RB Huey, ed. Biology of the Reptilian. Vol 16. New York. pp. 525-605.
Packard GC, CR Tracy, JJ Roth. 1977. The physiological ecology of reptilian eggs and embryos, and the evolution of viviparity within the class Reptilia. Biological Reviews 52: 71-105.
Parker SL, RM Andrews. 2007. Incubation temperature and phenotypic traits of Sceloporus undulatus: implications for the northern limits of distribution. Oecologia 151: 218-231.
Pough FH. 1989. Organismal performance and Darwinian fitness: approaches and interpretations. Physiol. Zool. 62: 199-236.
Putnam RW, AF Bennett. 1981. Thermal dependence of behavioral performance of anuran amphibians. Anim. Behav. 29: 502-509.
Renaud JM, ED Stevens. 1983. The extent of long-term temperature compensation for jumping distance in the frog, Rana pipiens and the toad, Bufo americanus. Can. J. Zool. 61: 1284-1287.
Spellerberg IF. 1972. Thermal ecology of allopatric lizards (Sphenomorphus) in southeast Australia. I. The environment and lizard critical temperatures. Oecologia 9: 371-383.
Tample GK, Johnston IA. 1998. Testing hypotheses concerning the phenotypic plasticity of escape performance in fish of the family Cottidae. J. Exp. Biol. 201: 317-331.
Wainwright P. 1994. Functional morphology as a tool in ecological research. In PC Wainwright, SM Reilly eds, Ecological morphology: integrative organismal biology. Univ. of Chicago Press, Chicago. pp. 42-59.
Wilson RS, CE Franklin, 1999. Thermal acclimation of locomotor performance in tadpoles of the frog Limnodynastes peronii. J. Comp. Physiol. B 169: 445-451.
Wilson RS, CE Franklin. 2000. Inability of adult Limnodynastes peronii (Amphibia: Anura) to thermally acclimate locomotor performance. Comp. Biochem. Physiol. A 127: 21-28.
Whitehead PJ, JT Puckridge, CM Leigh, RS Seymour. 1989. Effect of temperature on jump performance of the frog Limnodynastes tasmaniensis. Physiol. Zool. 62: 937-949.
van Damme R, D Bauwens, AM Castilla, RF Verheyen. 1989. Altitudinal variation of the thermal biology and running performance in the lizard Podarcis tiliguerta. Oecologia 80: 516-524.
van Berkum FF. 1985. The thermal sensitivity of sprint speed in lizards: the effects of latitude and altitude. Ph. D. Thesis. Univ. Washington.
van Berkum FF. 1986. Evolutionary patterns of the thermal sensitivity of sprint speed in Anolis lizards. Evolution 40: 594-604.
Chapter 5
Brown JH, GC Stevens, DM Kaufman. 1996. The geographic range: size, shape, boundaries, and internal structure. Annu. Rev. Ecol. Syst. 27: 597-623.
Caughley G, D Grice, R Barker, B Brown. 1988. The edge of the range. J. Anim. Ecol. 57: 771–785.
Cameron GN, D Scheel. 2001. Getting warmer: Effect of global climate change on distribution of rodents in Texas. J. Mammalogy 82: 652-680.
Chen, Y. H. 2007. The effect of temperature on embryos and juveniles of Takydromus hsuehshanensis. Master Thesis. National Taiwan Normal University. Taipei, Taiwan.
Cox CB, PD Moore. 1993. Biogeography: An Ecological and Evolutionary Approach. 5th edition. Blackwell Science, Oxford.
Davis MB, RG Shaw. 2001. Range shifts and adaptive responses to Quaternary climate change. Science 292: 673-679.
Dobzhansky TH. 1950. Evolution in the tropics. American Scientist 38: 209-221.
Gregory PT. 1982. Reptilian hibernation. In Gans C ed. Biology of the Reptilia, vol. 13. Academic Press, New York, New York. Pp. 53–154.
Gorman GC, S Hillman. 1977. Physiological basis for climate niche partitioning in two species Puerto Rican Anolis (Reptilia, Lacertilia, Iguanidae). J. Herpetol. 11: 337-340.
Heatwole HN, Mercado N, Ortiz E. 1965. Comparison of critical thermal maxima of two species of Puerto Rican frogs of the genus Eleutherodactylus. Physiol. Zool. 38: 1-8.
Hero JM. 1989. A simple code for toe clipping anurans. Herpetological Review 20: 66-67.
Holt RD. 2003. On the evolution ecology of a species’ ranges. Evo. Eco. Research 5: 159-178.
Huang SP, Y Hsu, MC Tu. 2006. Thermal tolerance and altitudinal distribution of two Sphenomorphus lizards in Taiwan. J. Therm. Biol. 31: 378-385.
Huang SP, MC Tu. 2008a. Heat tolerance and altitudinal distribution of a mountainous lizard, Takydromus hsuehshanensis, in Taiwan. J. Therm. Biol. 33: 48-56.
Huang SP, MC Tu. 2008b. Cold tolerance and altitudinal distribution of Takydromus lizards in Taiwan. Zool. Stud. 47: 438-444.
Hutchinson GE. 1957. Concluding remarks. Cold Spring Harbour Symposium on Quantitative Biology 22: 415-427.
Hutchinson GE. 1978. An introduction to population ecology. Yale University Press, New Haven, Connecticut, USA.
Jablonski D. 1987. Heritability at the Species Level: Analysis of Geographic Ranges of Cretaceous Mollusks. Science 238: 360-363.
Jacob JS, CW Painter. 1980. Overwinter thermal ecology of Crotalus viridis in the north-central plains of New Mexico. Copeia 1980: 799-805.
Krebs CJ. 2001. Ecology: The Experimental Analysis of Distribution and Abundance. San Francisco: Benjamin Cummings, 2001.
Lawton JH, S Nee, AJ Letcher, PH Harvey. 1994. Animal distributions: patterns and processes. In ‘Large-Scale Ecology and Conservation Biology: The 35th Symposium of the British Ecological Society with the Society for Conservation Biology’, University of Southampton, 1993. Edwards PJ, RM May, NR Webb eds, pp. 41-58. London: Blackwell.
Lillywhite HB. 1987. Temperature, energetics, and physiological ecology. In ‘Snakes: ecology and evolutionary biology’. Pough G. ed, Pp. 422-477. Macmillan. New York.
Lin SM, CA Chen, KY Lue. 2002. Molecular phylogeny and biogeography of the grass lizards genus Takydromus (Reptilia: Lacertidae) of east Asia. Molecular Phylogenetics and Evolution. 22: 276-288
Lue KY, SM Lin. 2008. Two new cryptic species of Takydromus (Squamata: Lacertidae) from Taiwan. Herpetologica. (in press)
MacArthur RH. 1972. Geographical Ecology. Harper & Row, New York.
McCarty JP. 2001. Ecological consequences of recent climate change. Conservation Biology 15: 320-331.
Molles CM Jr. 2002. Ecology: Concepts and Applications, International Edition, New York: The McGraw-Hill Companies, Inc., 586 pp
Naulleau G. 1970. La reproduction de Vipera aspis en captivité dans conditions artificelles. J. Herpetol. 4: 113-121.
Rivera S, B Lock. 2008. The reptilian thyroid and parathyroid glands. Veterinary clinics of North America: Exotic Animal Practice 11: 163-175.
Sanders JS, JS Jacob. 1981. Thermal ecology of the copperhead (Agkistrodon contortrix). Herpetologica 37: 264-270.
Spellerberg IF. 1972. Thermal Ecology of allopatric lizards (Sphenomorphus) in southeast Australia. I. The environment and lizard critical temperatures. Oecologia 9: 371-383.
Wei HL, PC Hou. 2004. The distribution implications of the thermal tolerance in the toad Bufo melanostictus. Annual Symposium on Biology, Stream, Behavior and Ecology. Taipei, Taiwan.