簡易檢索 / 詳目顯示

研究生: 于宜強
Yi-Chiang Yu
論文名稱: 陸地表過程對東亞夏季季風之影響研究
The impact of land surface processes on the East Asian summer monsoon
指導教授: 鄒治華
Tsou, Chih-Hua
許晃雄
Hsu, Huang-Hsiuang
柯文雄
Kau, Wen-Shung
學位類別: 博士
Doctor
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 189
中文關鍵詞: 地表過程區域模擬東亞夏季季風
英文關鍵詞: land surface process, regional simulation, East Asian Summer Monsoon
論文種類: 學術論文
相關次數: 點閱:318下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對Purdue Regional Model (PRM)進行地表過程模式的改進。Sun and Chern (2005)發表一個新的地表過程模式,可以精準的長時間模擬,Sleeper河谷地表溫度。這個新的地表過程模式,包括植物、覆雪及土壤三個部分,利用這個模式,精進PRM的地表過程。並針對1998年東亞夏季季風個案,進行評估比對。東亞夏季季風的主要特性,夏季梅雨鋒面的平均降雨位置、季風肇始時間、降雨帶隨季節北移及季內振盪等現象。模式的模擬,對這些現象的掌握具備相當水準。但是,在模式的表現中,地表溫度比實際偏高,以及太平洋高壓的勢力仍比實際觀測偏強,這個太平洋高壓的誤差與過去模擬相同。太平高壓偏強的誤差,導致南海與中南半島模擬雨量減少,東亞地區鋒面的北移,過於偏北。
    在地表使用(land use)資料的使用上,本研究蒐集二種新的高解析的地表使用資料,分別為美國馬里蘭大學(UMD, University of Maryland)及法國國家氣象研究中心(CNRM, centre national de recherches meteologiques / METEO-France),解析度均為1km×km。在植物模組中,引進植物葉面積指數(LAI)的衛星觀測資料,進行植物分布的修正。在不同地表使用與植物衛星資料的靈敏度測試中,發現當使用法國氣象研究中心的地表資料,模擬1998年東亞夏季季風,結果較為理想。當加入衛星植物LAI,可以小幅修正模擬的結果。在這些靈敏度的測試模擬中,使用法國資料模擬的地表溫度比UMD模擬的結果低,較為接近觀測資料。此結果的改善,是透過地表過程改變,使其高低層季風環流發生變化,影響降雨分布。
    地表過程與大氣之間的交互作用是非常的複雜,為了瞭解地表過程對季風的影響如何,在此設計了一組地表過程的靈敏度實驗,實驗中透過地表加熱過程的改變、地表覆蓋改變(裸土、闊葉林及農田)及土水改變進行。在上述的實驗中,針對模擬的東亞大陸全部進行改變,雖然各式的改變,熱能與水文的變化會同時發生,但是由於熱能改變海陸間對比所造成水氣通量的改變,遠遠大於當地因為熱能與水文改變,所釋放出的蒸發量。所有模擬中雨量的改變,都受其季風水氣傳送帶改變所主導。當地表過程呈現增溫時,季風環流將增強,水氣傳送的通量明顯增加,導致東亞地區雨量增加。但因為地表增溫,季風環流增強,使得太平洋高壓減弱東退。並在東海與日本附近海面上,激發增強一個氣旋式系統。次環流的增強使韓國及中國華北地區西南季風減弱,降雨減少,因此在東亞大陸上出現一個類似三明治的結構降雨變化。 在呈現降溫的模擬結果中,太平洋高壓明顯增強,並向西伸。使得季風水氣傳送帶,向西移動至高原邊緣,東亞地區的雨量明顯減少。
    在東亞季風進入與通過東亞地區時,必經的二個區域分別為中南半島,及華南地區。在此希望瞭解局部區域地表覆蓋的改變,對東亞季風的影響。二地區利用與前面相同的地表覆蓋改變(裸土、闊葉林及農田),當地表改為裸土時,地表溫度呈現增溫,當改為闊葉林時,地表呈現降溫,農田部分則呈現溫度變化較不明顯。當模擬中呈現增溫的模擬中,因為地表溫度上升增加海陸溫差,使其季風環流增強,季風的水氣傳送通量進入東亞地區增多。模擬降溫者,其反應相反,季風環流減弱,進入東亞地區的水氣傳送通量減少。在地表改變時,粗糙度隨植物種類改變而改變,其中農田與裸土部分較為相近。比較二者模擬,可以瞭解因為海陸溫差所增加的季風環流與水氣傳送量。中南半島增溫與粗糙度降低,所造成季風環流增強的位置,大致相近,都由中南半島陸地相東北延伸至台灣日本附近。華南地區的增溫,則增加由南海到台灣東北海域一帶的水氣傳送通量。華南地區的粗糙度改變,增加由南海向北方陸地傳送的水氣量。二者降雨的改變,都與水氣傳送的改變有關。地表過程的改變,對東亞地區夏季季風環流與降雨分布的影響,相當顯著。

    In this study, the land surface scheme of the Purdue Regional Model (PRM) was improved. Sun and Chern (2005) had created a new land surface model which had the ability of long term continue simulation to the Sleeper River region. In the new land surface model, including the vegetation, snow and soil parts. The land surface model was tried to improve the land surface process of the PRM. To evaluate the performance of the PRM was simulated to the 1998 East Asian summer monsoon case. The PRM can hold the well major features of the East Asian summer monsoon include the location of summer seasonal mean, the date of the summer onset, the northward propagation of the rain bands and ISOs. The simulated surface temperature is warmer than observed, and the Pacific subtropical high also is too strong. Due to the tropical high is too strong induce the precipitation is less in the south China and Indochina. The location of Mei-Yu front is more northward.
    The UMD and CNRM land use datasets are more high resolution what datasets were collected. In the vegetation scheme, the LAI data is used to modify the vegetation fraction. In the 1998 summer case, there are better results by using the CNRM dataset and observed LAI.
    The interaction process is complex between the land and atmosphere. For understand that the impact of land surface process, design some sensitivity test for land surface processes change, such as the warm and cold effect, different land cover and soil moisture cases. In these testes, the land sea heat contrast is more important than the local evaporation release to the influence of monsoon flow change. The precipitation is dominated by the monsoon flow. As the land surface temperature is warm, the monsoon flow is stronger than control run, induce the precipitation increase over East Asian. The monsoon flow is strong because is warm land case, induce the subtropical high decrease and withdraw eastward. One cyclone over Japan Sea is generated because monsoon flow is stronger. In the cold temperature case, the Pacific subtropical high increase and extend westward. The moisture flow of the summer monsoon moves westward, and induce the precipitation decrease over East Asia.

    第一章 前言 1 第二章 模式與資料介紹與實驗設計 7 2.1 模式介紹 7 2.1.1 普渡模式簡介 7 2.1.2 地表過程模式介紹 8 2.2 使用資料的介紹 16 2.2.1 大氣資料 16 2.2.2 地表資料 16 2.3 實驗設計 17 第三章 1998年東亞夏季季風之模擬 19 3.1 季節與月平均 19 3.2 季內振盪 20 3.3 東亞夏季季風肇始 22 第四章 模擬1998年東亞夏季季風之地表過程結果 24 第五章 使用不同土地利用資料(land use)資料之靈敏度實驗 30 5.1 靈敏度實驗說明 30 5.2 模擬結果 32 5.3 小結 40 第六章 地表過程對東亞季風的影響 42 6.1 地表加熱作用對夏季季風之影響 42 6.2 地表覆蓋改變對東亞夏季季風之影響 46 6.3 土水對東亞夏季季風之影響的靈敏度測試 50 6.4 討論與小結 54 第七章 中南半島及華南地區地表覆蓋改變對東亞夏季季風的衝擊 57 7.1 中南半島地表覆蓋改變實驗 59 7.1.1 東亞夏季平均溫度與降雨之變化 59 7.1.2 東亞夏季季風環流場變化 60 7.1.3 對東亞夏季季風降雨帶北移的影響 63 7.2 華南地區地表覆蓋改變實驗 66 7.2.1 東亞夏季平均溫度與降雨之變化 66 7.2.2 東亞夏季季風環流場變化 67 7.2.3 對東亞夏季季風降雨帶北移的影響 68 7.3 討論與小結 70 第八章 總結與討論

    于宜強,許晃雄,柯文雄,鄒治華,許武榮,商文義,2004:普渡區域模式模擬東亞夏季季風之評估。中華民國環境保護學會學刊, 第二十七卷第一期,40-56。
    林博雄、蕭志蕙,1999:南海季風實驗期間NCEP區域波譜模式的短期氣候診斷能力。第八屆國防科技學術研討會論文摘要集,80。
    余維能,1994:1991~2000 年東亞夏季季風之區域氣候模擬。台灣大學大氣科學系碩士論文。
    徐邦琪,2001:台灣地區五-七月豪(大)雨之中長期變化與季內震盪,國立台灣師範大學地球科學研究所碩士論文。
    蕭志蕙、莊漢明,1999:東亞地區1998年夏季(5-8月)環流演化之模擬研究。第八屆國防科技學術研討會論文摘要集,90。
    Anderson, D. M.; and Tice, A. R.1971: Low Temperature Phases of Interfacial Water in Clay-Water Systems. Soil Science Society of America Proceedings, 35, no. 1, Jan.-Feb. pp. 47-54.
    Anderson E.A. 1976:. A Point Energy Balance Model for a Snow Cover, Office of Hydrology, National Weather Service, NOAA Tech. Rep. NWS 19.
    Anthes, R. A., 1977: A cumulus parameterization scheme utilizing a one-dimensional cloud model. Mon. Wea. Rev., 105, 270-286.
    Avissar, R., and Y. Mahrer, 1988: Mapping frost sensitive areas with a three dimensional local scale numerical model. Part I: Physical and numerical aspects. J. Appl. Meteor., 27, 400-413.
    Arya, S. P. (1988) Introduction to micrometeorology. pp. 307,Academic Press.
    Bohren, C., Barkstrom, B. 1974:Theory of the Optical Properties of Snow. J. Geophys. Res 79: 4527-4535
    Bonan, G. B., D. Pollard, S. L. Thompson, 1992: Effects of boreal forest vegetation on global climate. Nature, 359, 716-718.
    Bosilovich, M. G., and W. Y. Sun, 1995: Formulation and verification of a land surface parameterization for atmospheric numerical models. Bound-Layer Meteor., 73,321-341.
    Bosilovich, M. B., and W. Y. Sun, 1998: Monthly simulation of surface layer fluxes and soil properties during FIFE. J. Atmos. Sci. 55, 1170–1183
    Bowen, I.S., 1926: The ratio of heat losses by conduction and by evaporation from any water surface. Physics Review, 27, pp 779—787
    Charney, J.G., 1975: Dynamics of deserts and droughts in Sahel. Quart. J. Roy. Meteor. Soc., 101, 193-202.
    Chase, T. N., R. A. Pielke, TGF Kittle, R. Nemani, SW Running, 1996: Sensitivity of a general circulation model to global changes in leaf area index. J. Geophys. Res., 101, 7393-7408.
    Chase, T. N., R. A. Pielke, TGF Kittle, R. Nemani, SW Running, 2000: Simulated impacts of historical land cover changes on global climate in northern winter. Clim. Dyn. 16, 93-105.
    Chern, J. D., 1994: Numerical simulation of cyclogenesis over the Western United States. Ph. D. Dissertation. Purdue University, West Lafayette, IN, 178pp.
    Chou, C. 2003: Land-sea heating contrast in an idealized Asian summer monsoon. Clim Dyn, 21, 11-25.
    Chou, M. D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models, NASA Tech. Memo., 104606, Vol.3, 85pp.
    Claussen M., and V. Gayler, 1997: The greening of Sahara during the mid-Holocene: Results of an interactive atmosphere-biome model. Global Ecol. Biogeo. Lett., 6, 369–377.
    Cox, P.M., R.A. Betts, and C.D. Jones, 2000: The impact of dynamic vegetation on Sahelian climate variability in a GCM. Eos, Trans. Amer. Geophys. Union, 81(Suppl.) Abstract B61D-02.
    Deardorff, J. W., 1977: A parameterization of the ground surface moisture content for use in atmospheric prediction models. J. Appl. Meteor., 16, 1182–1185.
    ——, 1978: Efficient prediction of ground surface temperature and moisture with inclusion of a layer of vegetation. J. Geophys. Res., 83, 1889–1903..
    Dickinson R.E., R.M. Errico, F.Giorgi and G.T. Bates, 1989: A regional climate model for western United States. Clim. Change, 15, 383-422.
    Dickinson, R. E., 1992: Change in land use. Climate System Modeling, K.E. Trenberth, Ed., Cambridge University Press, 689-701.
    Dickinson, R. E., A. Henderson-Sellers, P. J. Kennedy, 1993: Biosphere-Atmosphere Transfer scheme (BATS) version le as coupled to the NCAR community Climate Model, NCAR Tech. Note, TN-386+STR, 72.
    Ding Y. -H., 1992: Summer monsoon rainfalls in China. J. Meteror. Soc. Japan, 70, 373-396.
    Ding, Y. –H., 1994: Monsoon over China, Kluwer Academic Publishers, Dordrecht/Boston/London, pp 419.
    Ding, Y. –H., and Y. Liu, 2001: Onset and the evolution of the summer monsoon over the South China Sea during SCSMEX Field Experiment iin 1998. J. Meteor. Soc. Japan, 79, 255–276.
    Ding, Y., C. Li, and Y. Liu, 2004: Overview of the South China Sea Monsoon
    Experiment (SCSMEX). To appear in Adv. Atmos. Sci..
    Entin, J. K., A. Robock, K. Y. Vinnikov, S. E. Hollinger, S. Liu, and A Namkhai, 2000: Temporal and spatial scales of observed soil moisture variations in the extratropics. J. Geophys. Res., 105, 11 865-11 877.
    Fairhead, J. and Leach M. 1998: Reframing deforestation: global analysis and local realities: studies in West Africa, Routledge , London , 238.
    Fu, C. B. and G. Wen, 2002: Several issues on acidification in the northern China, Climatic and environmental research (in Chinese), 7, 22-29.
    Giorgi, F., 1990: Simulation of regional climate using a limited area model nested in a general circulation model. J. Climate, 3, 941-963.
    Giorgi F., M. R. Marinucci, and G. T. Bates, 1993a: Development of a second-generation regional climate model (Regcm2). Part I: Boundary-layer and radiative transfer processes. Mon. Wea. Rev., 121, 2794–2813.
    Giorgi F., M. R. Marinucci, G. DeCanio, and G. T. Bates, 1993b: Development of a second-generation regional climate model (Regcm2). Part II: Convective processes and assimilation of lateral boundary conditions. Mon. Wea. Rev., 121, 2814–2832.
    Gornitz, V. 1985: A survey of anthropogenic vegetation changes in West Africa during the last century-climatic implications, Clim. Change, 7, 285-325.
    Guo J. P. S. H. Gao and F. Mao, 2001: Study on drought tendency and defending countermeasures in north part of China. J. Nat. Dis. (in Chinese), 10. 32-36.
    Hansen, M. C., DeFries, R. S., Townshend, J. R. G., & Sholberg, R. (2000). Global land cover classification at 1 km spatial resolution using a classification tree approach. International Journal of Remote Sensing, 21, 1331-1364.
    Hong S.-Y., and A. Leetmaa, 1999: An evaluation of the NCEP RSM for regional climate modeling. J. Climate, 12, 592–609.
    Houghton, J.T.,Y. Ding, D.J.Griggs, M. Noguer, P.J.van der Linden,X.Dai, K.Manskell, C.A.Johson, 2001: Climate Change 2001:The scientific Basis.881pp.
    Hsu H. H., Terng C.T. and Chen C.T., 1999: Evolution of large-scale circulation and heating during the first transition of the Asian summer monsoon. Journal of Climate 12, 793-810.
    Hsu, H.-H., Y.-C. Yu, W.-S. Kau, W.-R. Hsu, W.-Y. Sun, and C.-H. Tsou, 2004: Simulation of the 1998 East Asian summer monsoon using Purdue regional model. J. Meteor. Soc. Japan, 82, 1715-1733.
    Jordan R. (1991). A One-Dimensional Temperature Model for a Snow Cover. U.S. Army Corps of Engineers, Cold Regions Research and Engineering Laboratory, Special Report 91–16, 49 pp.
    Jones, R., J. Murphy, and M. Noguer, 1995: Simulation of climate change over Europe using a nested regional climate model. Part I: Assessment of control climate, including sensitivity to location of lateral boundaries. Quart. J. Roy. Meteor. Soc., 121, 1413-1449.
    Koren, V., J.Schaake, K. Mitchell, Q.-Y. Duan, F. Chen, J. M. Baker, 1999: A parameterization of snowpack and frozen ground intended for NCEP weather and climate models. J. Geophy. Res. 104, NO. D16, 19569-19585.
    Kutzbach, J. E., and P. J. Gutter, 1986: The influence of changing orbital parameters and surface boundary conditions on climate simulations for the past 18000 years. J. Atmos. Sci., 43, 1726-1759.
    Kutzbach, J. E.,W. L. Prell, and W. F. Ruddiman, 1993: Sensitivity of Eurasian climate to surface uplift of the Tibetan Plateau. J. Geol., 101, 177-190.
    LaChapelle E.R. 1969: Properties of Snow, “prepared for hydrologic system course presented by College if Forest Resources, Nov. 17–18, Univ. of Washington, Seattle, 21pp
    Laval, K., R. Raghava, J. Polcher, R. Sadourny, and M. Forichon, 1996: Simulations of the 1987 and 1988 Indian monsoon using the LMD GCM, J. Clim., 9, 3357-3372.
    Lean J, P. R. Rowntree, 1997: Understanding the sensitivity of a GCM simulation of Amazonian deforestation to the specification of vegetation and soil characteristics. J Clim, 10, 1216-1235.
    Lee, D. –K., D. –H. Cha, and H. –S. Kang, 2002: Regional climate simulation of the 1998 summer flood over East Asia. Proceedings of the 2002 PSU/NCAR Mesoscale Modeling System Users’ Workshop.
    Li, Haibin, Alan Robock, Suxia Liu, Xingguo Mo, and Pedro Viterbo, 2005: Evaluation of reanalysis soil moisture simulations using updated Chinese soil moisture observations. J. Hydrometeorol., 6, 180-193.
    Li, C. and M. Yanai,1996:The Onset and Interannual Variability of the Asian Summer Monsoon in Relation to Land–Sea Thermal Contrast. J Clim. 9, 358–375
    Lynch-Stieglitz, M. 1994:The Development and Validation of a Simple Snow Model for GISS GCM" J. Climate 7: 1842-1855

    Marinucci, M. R., F. Giorgi, 1992: A 2XCO2 climate change scenario over Europe generated using a limited area model nested in a general Circulation Model 1. Present-Day Seasonal Climate Simulation, J. Geophys. Res., 97(D9), 9989-10009, 10.1029/92JD00615,.
    Masson V,Champeaux JL,Chauvin F,et al.2003.A global database of land surface parameters at 1 km resolution in meteorological and climate models.J Climate,16 (9):61 -82
    McGuffie K, A. Henderson-Sellers, H Zhang, TB Durbidge, AJ Pitman, 1995: Global climate sensitivity to tropical deforestation. Global Planet Change, 10, 97-128.
    Molinari, J., 1982: A method for calculating the effects of deep cumulus convection in numerical models. Mon. Wea. Rev., 110, 1527-1534.
    Mu, M. and C. Li, 2000: On the outbreak of South China Sea summer monsoon in 1998 and activities of Atmospheric intraseasonal oscillation, Journal of Climate and Environmental Research, 5, 375-387 (in Chinese).
    Nicholson, S. E.,C. J. Tucker, and M. B. Ba, 1998: Desertification, drought, and surface vegetation: am example from the West African Sahel, Bull. Amer. Meteor. Soc. 79, 815-829.
    Park, S., and S.-Y. Hong, 2004: The role of surface boundary forcing over south Asia in the Indian summer monsoon circulation: A regional climate model sensitivity study, Geophys. Res. Lett., 31, L12112.
    Pitman, A. J., A. G. Slater, C. E. Desborough, M. Zhao, 1999: Uncertainty in the simulation of runoff due to the parameterization of frozen soil moisture using the Global Soil Water Project methodology. J. Geophy. Res. 104(D14), 16879-16999.
    Pitman, A. J., G. T. Narisma, R. A. Pielke Sr., and N. J. Holbrok 2004: Impact of land cover change on the climate of southwest Western Australia, J. Geophys. Res., 109, D18109.
    Polcher, J., 1995: Sensitivity of tropical convection to land surface processes. J. Atmos. Sci. 52, 3143-3161.
    Prell, W. L., and J. E. Kutzbach, 1992: Sensitivity of the Indian monsoon to forcing parameters and implications for its evolution. Nature, 360, 647-652.
    Ramankutty N, J. A. Foley, 1999: Estimating historical change in global land cover: Croplands from 1700 to 1992. Glob Biogeochem Cycle 13(4) 997-1027.
    Reynolds, C.A., T. J. Jackson, and W.J. Rawls. 1999. Estimating Available Water Content by Linking the FAO Soil Map of the World with Global Soil Profile Databases and Pedo-transfer Functions. Proceedings of the AGU 1999 Spring Conference, Boston, MA. May31-June 4, 1999.
    Richardson, 1922: Weather Prediction by Numerical Process. Cambridge University Press, 236 pp.
    Robock, A., K. Y. Vinnikov,G. Srinvasan, J. K. Entin, S. E. Hollinger, N. A. Speranskaya, S. Liu, and A. Namkhai, 2000: The global soil moisture data bank. Bull. Amer. Meteor. Soc., 81, 1281-1299.
    Rowell, D. P., C. K. Folland, K. Maskell, M. N. Ward, 1995: Variability of summer rainfall over tropical north Africa (1906-92): observations and modeling. Q. J. R. Meteorol. Soc. 121. 669-704.
    Sellers, P.J., Randall, D.A., Collatz, G.J., Berry, J.A., Field, C.B., Dazlich, D.A., Zhang, C., Collelo, G.D., and Bounoua, L., 1996, A revised land surface parameterization (SiB2) for atmospheric GCMs - Part I-model formulation: Journal of Climate, v. 9, p. 676-705.
    Shukla, J., and Y. Mintz, 1982: Influence of land-surface evapotranspiration on the earth’s climate. Science, 215, 1498–1501..
    Schulze, E.-D.,F.M. Kelliher, C. Koner, J. Lloyd, and R. Leuning, 1994: Relationship among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annu. Rev. Ecol. Syst., 25, 629-660.
    Small E. E. 2001: The influence of soil moisture anomalies on variability of the North American monsoon system. Goephy. Res. Letters. 28, 139-142.
    Sud, Y.C., J. Shukla, and Y. Mintz, 1988: Influence of land surface roughness on atmospheric circulation and precipitation: A sensitivity study with a general circulation model. J. Appl. Meteor., 27, 1036-1054.
    Suh M.-S., D.-K. Lee ,2004: Impacts of land use/cover changes on surface climate over east Asia for extreme climate cases using RegCM2, J. Geophys. Res., 109, D02108, doi:10.1029/2003JD003681.
    Sun, W.Y., Bosilovich, M.G. 1996: Planetary Boundary Layer and Surface Layer Sensitivity to Land Surface Parameters. Boundary-Layer Meteorol 77: 353-378
    Sun, W. Y., and J. D. Chern, 1993: Diurnal variation of lee-vortexes in Taiwan and surrounding area. J. Atmos. Sci., 50, 3404-3430.
    ──, and W. R. Hsu, 1988: Numerical study of a cold air outbreak over the ocean. J. Atmos. Sci., 45, 1205-1227.
    Sun, W. Y. 2001:. Interactions Among Atmosphere, Soil, and Vegetation. Chapter 6. Applications and Development of Agrometeorology. Eds: Yang, Lin, and Lin, Publisher: Taiwan Agricultural Research Institute and Chinese Society of Agrometeorology, July 2001, Taiwan, 69–92
    Sun, W. Y. and J.-D. Chern, 2005: One dimensional snow-land surface model applied to Sleepers experiment. Boundary Layer Meteorol,116,95-115.
    Tao, S.Y., and L.X. Chen, 1987: A review of recent research on the East Asian summer monsoon in China. Monsoon Meteorology, C.-P. Chang and T. N. Krishnamurti, Eds., Oxford University Press, 60-92.
    Vinnikov, K. Y., and I. B. Teserkepova, 1991: soil moisture: Empirical data and model results. J. Climate, 4, 66-79.
    --------, A. Robock , N. A. Speranskaya , and A. Scholosser , 1996: Scale of temporal and spatial variability of midlatitude soil moisture. J. Geophys. Res., 101, 7163-7114.
    Viterbo, P., A. Beljaars, J. F. Mahfouf, and J. Teixerira, 1999: The representation of soil moisture greezing and its impact on the stable boundary layer. Quarterly Journal the Royal Meteorological Society, 125(599), 2401-2426.
    Wang, Y., O.L. Sen, and B. Wang, 2003: A highly resolved regional climate model (IPRC-RegCM) and its simulation of the 1998 severe precipitation event over china. part I: model description and verification of simulation. J. Climate, 16, 1721-1738.
    Wang, B., and LinHo, 2002: Rainy season of the Asian–Pacific summer monsoon. J. Climate, 15, 386–398.
    Wang, T., and W. Wu, 1999: Land use and sandy desertification in Northern China, J. Nat. Res. (in Chinese) 14. 355-358.
    Wang W.-C., W. Gong, and H. Wei, 2000: A regional model simulation of the 1991 severe precipitation event over the Yangtze–Huai River valley. Part I: Precipitation and circulation statistics. J. Climate, 13, 74–92.
    WEBSTER, P. J., 1972: Response of the Tropical Atmosphere to Local, Steady Forcing. Mon. Wea. Rev.100, 518–541
    Webster, P. J., and L. Chou, 1980: Seasonal structure of a simple monsoon system. J. Atmos. Sci., 37, 354-367.
    Webster, P. J. 1987: The elementary monsoon. Monsoon, J. S. Fein and P. L. Stephens. Eds., John Wiley and Sons, 3-32.
    Wilson, M. F., and A. Henderson-Sellers. 1985b. A Global Archive of Land Cover and Soils Data for Use in General Circulation Climate Models. Journal of Climatology 5:119-143.
    Woodward, F. I., 1987: Climate and plant distribution. Cambridge University, 174pp.
    Wu, T. W. and Z. A. Qian, 2003: The relationship between the Tibatan winter snow and the Asian summer monsoon and rainfall: an observational investigation. J. Climate, 16, 2038-2051.
    Xu, G. and Q. Zhu, 2002: Feature analysis of summer monsoon LFO over SCS in 1998. Journal of Tropical Meteorology ,18, 309-316.
    Xu J. and C. L. Chan, 2001: First transition of the Asian summer monsoon in 1998 and the effect of the Tibet-tropical Indian Ocean thermal contrast. J. Meteor Soc. Japan , 79, 241-253.
    Xue, Y., P. J. Sellers, J. L. Kinter, and J. Shukla, 1991: A simplified biosphere model for global climate studies.J. Climate, 4, 345-364.
    Xue, Y., 1997: Biosphere feedback on regional climate in tropical north Africa. Q. J. Meteorol Soc. 123. 1483-1515.
    Yang, S. and K.-M. Lau, 1998: Influence of sea surface temperature and ground wetness on Asian summer monsoon. J. Climate, 11,3230-3246.
    Yeh,T.-C., R.T. Wetherald, and S. Manabe,1984: The Effect of Soil Moisture on the Short-Term Climate and Hydrology Change—A Numerical Experiment., Mon. Wea. Rev. 112, 474– 490
    Zhang, Y., T. Li and B. Wang, 2004: Decadal change of the spring snow depth over the Tibetan Plateau: the associated circulation and influence on the east asian summer monsoon. J. Climate, 17, 2780-2793.
    Zhao, M., A. J. Pitman, T. N. Chase, 2001: The impact of land cover change on the atmospheric circulation. Clim. Dyn., 17, 467-477.

    QR CODE