研究生: |
呂俊億 |
---|---|
論文名稱: |
n-型氮化銦薄膜之光譜性質研究 Optical studies of n-type InN thin film |
指導教授: |
劉祥麟
Liu, Hsiang-Lin 胡淑芬 Hu, Shu-Fen |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 90 |
中文關鍵詞: | 氮化銦 、螢光 、光譜 、超導 |
論文種類: | 學術論文 |
相關次數: | 點閱:193 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們研究利用有機金屬氣相磊晶法成長在 (0001) 藍寶石基板上的 n 型氮化銦薄膜 (膜厚為 120 ~ 220 nm 左右) 之光譜性質。我們觀察到n 型氮化銦薄膜的室溫光激螢光光譜強度最大的頻率位置約在 0.8 eV。我們也發現另一個出現在 0.96 eV的光激螢光訊號,其物理機制目前尚未明瞭。此外,主要的光激螢光峰值隨著溫度下降,出現些微的紅移、藍移以及紅移的現象,其原因來自於熱擴張效應、帶尾能隙的載子受熱擾動及聲子干擾造成晶格受熱擾動等影響而成。
我們量測 n 型氮化銦薄膜的變溫反射光譜 (溫度範圍為 10 K 和 340 K 之間)。室溫遠紅外光光學電導率包括了在448 cm-1 與475 cm-1的A1(TO) 和 E1(TO) 兩個振動模。利用非簡諧振盪的模型可以解釋聲子擬合參數隨溫度的變化。有趣地是,居德電漿頻率 (~ 5200 cm-1) 及能隙行為之吸收峰 (~ 7500 cm-1) 不隨溫度變化,反之,電荷載子的碰撞率隨著降溫而變小。我們也藉由橢圓儀量測n 型氮化銦薄膜的光譜響應,介電函數顯示在 1.4 eV、3 eV、5 eV、5.3 eV以及6.1 eV 具有吸收峰,這些吸收峰的能量位置與氮化銦之電子結構理論計算結果相符。
參考文獻
[1] Ashraful Ghani Bhuiyan, Akihiro Hashimoto, and Akio Yamamoto, “Indium nitride InN: A review on growth, characterization, and properties”, J. Appl. Phys. 94, 5 (2003).
[2] R. Juza and H. Hahn, “Über die kristallstrukturen von Cu3N, GaN und InN metallamide und metallnitride”, Z. Anorg. Allg. Chem. 239, 282 (1938).
[3] T. L. Tansley and C. P. Foley, “Electron mobility in indium nitride”, Electron Lett. 20 (1972).
[4] Wladek Walukiewicz, “P-type indium nitride achieved”, Materials Sciences Division, Berkeley Lab.
[5] R. E. Jones, K. M. Yu, S. X. Li, W. Walukiewicz, J. W. Ager, E. E. Haller, H. Lu, and W. J. Schaff, “Evidence for p-type doping of InN”, Phys. Rev. Lett. 96, 125505 (2006).
[6] P. H. Chang, C. T. Liang, N. C. Chen, T. Y. Huang, and Y. F. Chen, “Superconductivity and mixed-state characteristic of InN films by metal-organic vapor phase epitaxy”, Diamond & Related Materials 15, 1179 (2006).
[7] T. Inushima, V. V. Mamutin, V. A. Vekshin, S. V. Ivanov, T. Sakon, M. Motokawa, and S. Ohoya, “Physical properties of InN with the band gap energy of 1.1 eV”, J. Cryst. Grow. 227, 481 (2001).
[8] D. C. Ling, J. H. Cheng, Y. Y. Lo, C. H. Du, A. P. Chiu, C. A. Chang, and P. H. Chang, “Quasi-two-dimensional superconductivity in wurtzite-structured InN films”, Phys. Status Solidi B 244, 4594 (2007).
[9] P. P. Chen, H. Makino, T. X. Li, J. B. Wang, W. Lu, and T. Yao, “Optical properties of InN films grown by molecular beam epitaxy at different conditions”, Thin Solid Films 513, 166 (2006).
[10] Enrico Bellotti, Bhautik K. Doshi, Kevin F. Brennan, John D. Albrecht, and P. Paul Ruden, “Ensemble monte carlo study of electron transport in wurtzite InN”, J. Appl. Phys. 85, 916 (1999).
[11] V. W. L. Chin, T. L. Tansley, and T. Osotchan, “Electron mobilities in gallium, indium, and aluminum nitrides”, J. Appl. Phys. 75, 7365 (1994).
[12] C. Bulutay and B. K. Ridley, “Theoretical assessment of electronic transport in InN”, Superlattices and Microstructures 36, 465 (2004).
[13] T. L. Tansley and C. P. Foley, “Optical band gap of indium nitride”, J. Appl. Phys. 59, 3241 (1986).
[14] W. Z. Shen, L. F. Jiang, H. F. Yang, F. Y. Meng, H. Ogawa, and Q. X. Guo, “Bandtail characteristics in InN thin films”, Appl. Phys. Lett. 80, 2063 (2002).
[15] C. Wetzel, T. Takeuchi, S. Yamaguchi, H. Katoh, H. Amano, and I. Akasaki, “Optical band gap in Ga1 – xInxN (0 < x < 0.2) on GaN by photoreflection spectroscopy”, Appl. Phys. Lett. 73, 1994 (1998).
[16] V. Yu. Davydov, A. A. Klochikhin, R. P. Seisyan, V. V. Emtsev, S. V. Ivanov, F. Bechstedt, J. Furthmüller, H. Harima, A. V. Mudryi, J. Aderhold, O. Semchinova, and J. Grau, “Absorption and emission of hexagonal InN. Evidence of narrow fundamental band gap”, Phys. Status Solidi B 229, R1 (2002).
[17] J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, E. E. Haller, Hai Lu, and William J. Schaff, “Effects of the narrow band gap on the properties of InN”, Phys. Rev. B 66, 201403 (2002).
[18] K. M. Yu, Z. Liliental-Weber, W. Walukiewicz, W. Shan, J. W. Ager III, S. X. Li, R. E. Jones, E. E. Haller, Hai Lu, and William J. Schaff, “On the crystalline structure, stoichiometry and band gap of InN thin films”, Appl. Phys. Lett. 86, 071910 (2005).
[19] T. Matsuoka, H. Okamoto, M. Nakao, H. Harima, and E. Kurimoto, “Optical bandgap energy of wurtzite InN”, Appl. Phys. Lett. 81, 1246 (2002).
[20] S P Fu, T T chen, and Y F Chen, “Photoluminescent properties of InN epifilms”, Semicond. Sci. Technol. 21, 244 (2006).
[21] T. V. Shubina, S. V. Ivanov, V. N. Jmerik, D. D. Solnyshkov, V. A. Vekshin, and P. S. Kop’ev, “Mie resonances, infrared emission, and the band gap of InN”, Phys. Rev. Lett. 92, 117407 (2004).
[22] F. Bechstedt, J. , O. Ambacher, and R. Goldhahn, “Comment on “Mie resonances, infrared emission and the band gap of InN””, Phys. Rev. Lett. 93, 269701 (2004).
[23] R. Intartaglia, B. Maleyre, S. Ruffenach, O. Briot, T. Taliercio, and B. Gil, “Radiative and nonradiative recombination processes in InN films grown by metal organic chemical vapor deposition”, Appl. Phys. Lett. 86, 142104 (2005).
[24] Cho. Yong-Hoon, G. H. Gainer, A. J. Fischer, and J. J. Song, “"S-shaped" temperature-dependent emission shift and carrier dynamics in InGaN/GaN multiple quantum wells”, Appl. Phys. Lett. 73, 1370 (1998).
[25] O. Briot, B. Maleyre, S. Clur-Ruffenach, B. Gil, C. Pinquier, F. Demangeot, and J. Frandon, “The value of the direct bandgap of InN: a re-examination”, Phys. Status Solidi C 1, 1425 (2004).
[26] Petr G. Eliseev, Piotr Perlin, Lee Jinhyun, and Marek Osiński, “"Blue" temperature-induced shift and band-tail emission in InGaN-based light sources”, Appl. Phys. Lett. 71, 569 (1997).
[27] F. B. Naranjo, M. A. Sánchez-García, F. Calle, E. Calleja, B. Jenichen, and K. H. Ploog, “Strong localization in InGaN layers with high in content grown by molecular-beam epitaxy”, Appl. Phys. Lett. 80, 231 (2002).
[28] B. Arnaudov, T. Paskova, P. P. Paskov, B. Magnusson, E. Valcheva, B. Monemar, H. Lu, W. J. Schaff, H. Amano, and I. Akasaki, “Energy position of near-band-edge emission spectra of InN epitaxial layers with different doping levels”, Phys. Rev. B 69, 115216 (2004).
[29] T. Inushima, T. Shiraishi, and V. Yu Davydov, “Phonon structure of InN grown by atomic layer epitaxy”, Solid State Commun. 110, 491 (1999).
[30] C. Wetzel and I. Akasaki, “Raman and IR studies of InN”, Properties, Synthesis, Characterization, and Applications of Gallium Nitride and Related Semiconductors A 4.2 February (1998).
[31] Daniel Fritsch, Heidemarie Schmidt, and Marius Grundmann, “Band dispersion relations of zinc-blende and wurtzite InN”, Phys. Rev. B 69, 15204 (2004).
[32] A. Kasic, E. Valcheva, B. Monemar, H. Lu, and W. J. Schaff, “InN dielectric function from the midinfrared to the ultraviolet range”, Phys. Rev. B 70, 115217 (2004).
[33] M. Drago, T. Schmidtling, C. Werner, M. Pristovsek, U. W. Pohl, and W. Richter, “InN growth and annealing investigations using in-situ spectroscopic ellipsometry”, J. Cryst. Growth 272, 87 (2004).
[34] T. L. Tansley and C. P. Foley, “ Proceedings of the 3rd International conference on Semi-Insulating III-V Materials”, Warm Spring, Orengon, p. 497 (1984).
[35] D. W. Jenkins and J. D. Dow, “Electronic structures and doping of InN, InxGa1-xN, and InxAl1-xN”, Phys. Rev. B 39, 3317 (1989).
[36] T. L. Tansley and R. J. Egan, “Point-defect energies in the nitrides of aluminum, gallium, and indium”, Phys. Rev. B 45, 10942 (1992).
[37] T. L. Tansley and R. J. Egan, “Growth and doping of Al(x)Ga(1-x)N films by electron cyclotron resonance assisted molecular beam epitaxy”, Mat. Res. Soc. Symp. Proc. 242, 395 (1992).
[38] T. Inushima, N. Kato, T. Takenobu, and M. Motokawa, “Superconductivity of InN”, Phys. Status Solidi A 203, 80 (2006).
[39] T. Inushima, N. Kato, Y.S.T. Takenobu, and M. Motokawa, “Optimum carrier density for the occurrence of superconductivity of InN”, Phys. Status Solidi C 2, 2271 (2005).
[40] Takashi Inushima, “Electronic structure of superconducting InN”, Science and Technology of Advanced Materials 7, S112 (2006).
[41] T. Inushima, M. Higashiwaki, T. Matsui, T. Takenobu, and M. Motokawa, “Electron density dependence of the electronic structure of InN epitaxial layers grown on sapphire (0001)”, Phys. Rev. B 72, 085210 (2005).
[42] T. Inushima, N. Kato, D. K. Maude, H. Lu, W. J. SchaffT, R. Tauk, Y. Meziani, S. Ruffenack, O. Briot, W. Knap, B. Gil, H. Miwa, A. Yamoto, D. Muto, Y. Nanishi, H. Higashiwaki, T. Matsui, T. Inushima, N. Kato, D. K. Maude, H. Lu, W. J. SchaffT, R. Tauk, Y. Meziani, S. Ruffenack, O. Briot, W. Knap, B. Gil, H. Miwa, A. Yamoto, D. Muto, Y. Nanishi, H. Higashiwaki, and T. Matsui, “Superconductivity of InN with a well defined Fermi surface”, Phys. Status Solidi B 243, 1679 (2006).
[43] Douglas A. Skoog and James J. Leary著,林敬二、林宗義審譯,儀器分析,美亞書版股份有限公司,1971第四版上冊。
[44] 毛光興著,儀器分析,幼獅文化事業公司,中華民國六十九年七月第二版。
[45] 李冠卿著,近代光學,聯經出版社,中華民國七十七年九月初版。
[46] P. H. Chang, Y. Y. Wei, C. W. Chen, H. C. Peng, D. C. Ling, N. C. Chen, and C. A. Chang, “Growth and characterization of InN thin film by metal-organic vapor phase epitaxy (MOVPE) on different buffers”, Phys. Status Solidi C 5, 1594 (2008).
[47] For a review, see, A. B. Pippard (Ed.), Magnetoresistance in Metals (Cambridge University Press, 1989), p. 23.
[48] J. A. Chervenak and J. M. Valles, “Absence of a zero-temperature vortex solid phase in strongly disordered superconducting Bi films ”, Phys. Rev. B 61, R9245 (2000).
[49] T. Sasaki, W. Biberacher, K. Neumaier, W. Hehn, K. Andres, and T. Fukase, “Quantum liquid of vortices in the quasi-two-dimensional organic superconductor κ-(BEDT-TTF)2(CuNCS)2”, Phys. Rev. B 57, 10889 (1998).
[50] C. Attanasio, C. Coccorese, L. Maritato, S. L. Prischepa, M. Salvato, B. Engel, and C. M. Falco, “Quantum vortex melting in Nb/CuMn multilayers”, Phys. Rev. B 53, 1087 (1996).
[51] 李宗憲 “有機金屬化學氣相沉積法成長氮化銦薄膜之特性研究”,國立中央大學物理研究所碩士論文,95 年 7 月。
[52] V. Y. Davydov, A. A. Klochikhin, V. V. Emtsev, D. A. Kurdyukov, S. V. Ivanov, V. A. Vekshin, F. Bechstedt, J. Furthmüller, J. Aderhold, J. Graul, A. V. Mudryi, H. Harima, A. Hashimoto, A. Yamanoto, and E. E. Haller, “Band gap of hexagonal InN and InGaN alloys”, Phys. Status Solidi B 234, 787 (2002).
[53] F. Wooten, “Optical properties of Solids”, Academic, New York (1972).
[54] N. L. Wang, A. W. McConnell, B. P. Clayman, and G. D. Gu, “Doping dependence of the pseudogap in the ab plane infrared spectra of Bi2Sr2Ca1-xYxCu2O8+δ”, Phys. Rev. B 59, 576 (1999).
[55] Ikai Lo, W. T. Wang, M. H. Gau, S. F. Tsay, and J. C. Chiang†, “Wurtzite structure effects on spin splitting in GaN/AlN quantum wells”, Phys. Rev. B 72, 245329 (2005).
[56] J. J. Tu, G. L. Carr, V. Perebeinos, C. C. Homes, M. Strongin, P. B. Allen, W. N. Kang, Eun-Mi Choi, Hyeong-Jin Kim, and Sung-Ik Lee, “Optical properties of c-Axis oriented superconducting MgB2 films”, Phys. Rev. Lett. 87, 277001 (2001).
[57] V. Yu. Davydov, V. V. Emtsev, I. N. Goncharuk, A. N. Smirnov, V. D. Petrikov, V. V. Mamutin, V. A. Vekshin, and S. V. Ivanov, “Experimental and theoretical studies of phonons in hexagonal InN”, Appl. Phys. Lett. 75, 3279 (1999).
[58] A. V. Puchkov, D. N. Basov, and T. Timusk, “The pseudogap state in high-Tc superconductors: an infrared study”, J. Phys.: Condens. Matter 8, 10049 (1996).
[59] S. J. Youn, T. H. Rho, B. I. Min, and Kwang S. Kim, “Extended Drude model analysis of noble metals”, Phys. Status Solidi B 244, 1354 (2007).
[60] J. J. Tu, G. L. Carr, V. Perebeinos, C. C. Homes, M. Strongin, P. B. Allen, W. N. Kang, and Eun-Mi Choi, “Optical properties of c-axis oriented superconducting MgB2 films”, Phys. Rev. Lett. 87, 27 (2001).
[61] H. J. Xiang, Zhenyu Li, Jinlong Yang, J. G. Hou, and Qingshi Zhu, “Electron-phonon coupling in a boron-doped diamond superconductor”, Phys. Rev. B 70, 212514 (2004).