簡易檢索 / 詳目顯示

研究生: 張瓊文
Chang, Chiung-Wen
論文名稱: 以質譜技術評估在不同酸鹼值環境水解Avastin之雙硫鍵錯接變化
Evaluation of disulfide scrambling at various pH on Avastin digestion by mass spectrometry
指導教授: 陳頌方
Chen, Sung-Fang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 93
中文關鍵詞: 雙硫鍵重組酸鹼值雙甲基化標記質譜RADAR單株抗體
英文關鍵詞: Scrambling
論文種類: 學術論文
相關次數: 點閱:208下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   正確的雙硫鍵摺疊影響蛋白質的活性及結構穩定性,因此對蛋白質類藥物而言,鑑定雙硫鍵的連接情況至關重要。隨著質譜技術的成熟,現今多以生化質譜方法鑑定蛋白質雙硫鍵,在此方法中需使用酵素水解蛋白質。酵素活性範圍多為弱鹼性環境,然而在弱鹼性環境下可能使蛋白質雙硫鍵還原再重新摺疊形成不同構型的雙硫鍵,造成在結構鑑定上無法判斷是樣品本身的雙硫鍵摺疊錯誤還是因實驗過程而產生的雙硫鍵重組。在本研究中,以溶菌酶(Lysozyme)及Bevacizumab(Avastin)作為樣品,控制酵素在中性以及弱酸性的溶液下進行水解,再使用雙甲基化標記結合質譜方法搭配RADAR軟體鑑定雙硫鍵,進而觀察雙硫鍵連接情形的變化,以提供最佳化鑑定雙硫鍵的實驗條件,降低雙硫鍵重組應造成的干擾。以trypsin及Lys-C在pH 6環境水解樣品,可完整鑑定到預期的含雙硫鍵胜肽,且皆未鑑定到錯接雙硫鍵。而以trypsin + Glu-C搭配變性劑rapigest在pH 6環境下水解Avastin,也可完整鑑定到預期的含雙硫鍵胜肽,且未觀察到錯接雙硫鍵。以thermolysin進行水解,不論在pH 5, 6, 7環境下都有觀察到錯接雙硫鍵的存在。本研究結果顯示,選用適當的酵素、在弱酸性的環境下進行水解反應,可有效的減少雙硫鍵重組反應的發生,雖然使用的酵素活性受到抑制,但依舊可以成功鑑定到溶菌酶及Bevacizumab中所有的雙硫鍵。

    Disulfide linkages play an important role in protein stability and activity. Thus, it is critical to characterize disulfide bonds to ensure quality and functions of protein drugs. Protein digestion procedures cannot be avoided for disulfide linkage analysis in conventional manner. In order to preserve enzyme activity during protein digestion, it is commonly carried out at basic environment which increases the possibilities of disulfide bond scrambling. However; when disulfide bond rearrangement occurs, it is not quite easy to differentiate whether by sample itself or digestion process cause the scrambling disulfide linkages. In this study, optimization on digestion pH was realized for the reduction of disulfide bond rearrangement. Three sets of proteases, including trypsin plus Glu-C, thermolysin and Lys-C were used, followed by dimethyl labeling and mass spectrometry for bevacizumab (Avastin) disulfide linkage analysis. There was no scrambled disulfide bond identified at pH 6 when using Lys-C or trypsin plus Glu-C as enzymes. When thermolysin was applied, there were still scrambled disulfide bonds identified either at pH 5, pH 6 or pH 7. Nevertheless, there was fewer scrambled disulfide bonds observed at low pH. All disulfide bonds on bevacizumab can be solved with this approach. The results demonstrated that by choosing the proper enzymes, using lower digestion pH environment could reduce the degree of scrambled disulfide linkages.

    Abstract I 中文摘要 II 縮寫 III 第一章 序論 1 第一節 前言 1 第二節 蛋白質雙硫鍵 2 第三節 蛋白質藥物介紹 3 第四節 質譜儀介紹 4 第五節 蛋白質身分鑑定 7 第六節 蛋白質雙硫鍵鑑定 8 第七節 實驗原理 8 第八節 研究動機與目的 11 第二章 實驗材料 12 第一節 實驗樣品 12 第二節 實驗藥品 12 第三節 實驗試劑 12 第四節 實驗儀器 13 第三章 實驗方法 14 第一節 在中性及弱酸性(pH 6)環境下以trypsin水解lysozyme 14 第二節 在中性及弱酸性(pH 6)環境下以Lys-C水解Avastin 15 第三節 中性及弱酸性(pH 6)環境下以trypsin + Glu-C水解Avastin 16 第四節 以Rapigest搭配trypsin + Glu-C水解Avastin 17 第五節 在中性及弱酸性(pH 6, 5)環境以thermolysin水解Avastin 18 第六節 在pH 5環境縮短thermolysin水解Avastin時間 19 第七節 毛細管柱製備 20 第八節 層析參數設定 21 第九節 質譜參數設定 22 第十節 RADAR參數設定 24 第四章 實驗結果與討論 25 第一節 以trypsin在中性及弱酸性環境下水解lysozyme 25 第二節 以Lys-C在中性及弱酸性環境下水解Avastin 27 第三節 以trypsin + Glu-C在中性及弱酸性環境下水解Avastin 29 第四節 以thermolysin在中性及弱酸性環境下水解Avastin 31 第五章 結論與未來展望 34 參考文獻 35 附圖 40 附表 75

    1. Huang, S.-Y.; Hsieh, Y.-T.; Chen, C.-H.; Chen, C.-C.; Sung, W.-C.; Chou, M.-Y.; Chen, S.-F., Automatic disulfide bond assignment using a1 ion screening by mass spectrometry for structural characterization of protein pharmaceuticals. Analytical chemistry 2012, 84 (11), 4900-4906.
    2. Góngora-Benítez, M.; Tulla-Puche, J.; Albericio, F., Multifaceted Roles of Disulfide Bonds. Peptides as Therapeutics. Chemical reviews 2014.
    3. Anfinsen, C. B., Principles that govern the folding of protein chains. Science 1973, 181 (4096), 223-230.
    4. Ryle, A.; Sanger, F., Disulphide interchange reactions. Biochemical Journal 1955, 60 (4), 535.
    5. Yen, T. Y.; Joshi, R. K.; Yan, H.; Seto, N. O.; Palcic, M. M.; Macher, B. A., Characterization of cysteine residues and disulfide bonds in proteins by liquid chromatography/electrospray ionization tandem mass spectrometry. Journal of mass spectrometry 2000, 35 (8), 990-1002.
    6. Pompach, P.; Man, P.; Kavan, D.; Hofbauerová, K.; Kumar, V.; Bezouška, K.; Havlíček, V.; Novák, P., Modified electrophoretic and digestion conditions allow a simplified mass spectrometric evaluation of disulfide bonds. Journal of mass spectrometry 2009, 44 (11), 1571-1578.
    7. Choi, S.; Jeong, J.; Na, S.; Lee, H. S.; Kim, H.-Y.; Lee, K.-J.; Paek, E., New algorithm for the identification of intact disulfide linkages based on fragmentation characteristics in tandem mass spectra. Journal of proteome research 2009, 9 (1), 626-635.
    8. Wang, Y.; Lu, Q.; Wu, S.-L.; Karger, B. L.; Hancock, W. S., Characterization and comparison of disulfide linkages and scrambling patterns in therapeutic monoclonal antibodies: using LC-MS with electron transfer dissociation. Analytical chemistry 2011, 83 (8), 3133-3140.
    9. Chandrasekhar, S.; Epling, D. E.; Sophocleous, A. M.; Topp, E. M., Thiol–Disulfide Exchange in Peptides Derived from Human Growth Hormone. Journal of pharmaceutical sciences 2014, 103 (4), 1032-1042.
    10. Chandrasekhar, S.; Topp, E. M., Thiol–Disulfide Exchange in Peptides Derived from Human Growth Hormone During Lyophilization and Storage in the Solid State. Journal of pharmaceutical sciences 2015, 104 (4), 1291-1302.
    11. Fleming, A., On a remarkable bacteriolytic element found in tissues and secretions. Proceedings of the Royal Society of London B: Biological Sciences 1922, 93 (653), 306-317.
    12. Kenner, G., The Bakerian Lecture: Towards Synthesis of Proteins. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences 1977, 441-457.
    13. Yi, E. C.; Lee, H.; Aebersold, R.; Goodlett, D. R., A microcapillary trap cartridge‐microcapillary high‐performance liquid chromatography electrospray ionization emitter device capable of peptide tandem mass spectrometry at the attomole level on an ion trap mass spectrometer with automated routine operation. Rapid communications in mass spectrometry 2003, 17 (18), 2093-2098.
    14. Fenn, J. B.; Mann, M.; Meng, C. K.; Wong, S. F.; Whitehouse, C. M., Electrospray ionization for mass spectrometry of large biomolecules. Science 1989, 246 (4926), 64-71.
    15. El-Aneed, A.; Cohen, A.; Banoub, J., Mass spectrometry, review of the basics: Electrospray, MALDI, and commonly used mass analyzers. Applied Spectroscopy Reviews 2009, 44 (3), 210-230.
    16. Konermann, L.; Ahadi, E.; Rodriguez, A. D.; Vahidi, S., Unraveling the mechanism of electrospray ionization. Analytical chemistry 2012, 85 (1), 2-9.
    17. Nesvizhskii, A. I.; Keller, A.; Kolker, E.; Aebersold, R., A statistical model for identifying proteins by tandem mass spectrometry. Analytical chemistry 2003, 75 (17), 4646-4658.
    18. Peng, J.; Elias, J. E.; Thoreen, C. C.; Licklider, L. J.; Gygi, S. P., Evaluation of multidimensional chromatography coupled with tandem mass spectrometry (LC/LC-MS/MS) for large-scale protein analysis: the yeast proteome. Journal of proteome research 2003, 2 (1), 43-50.
    19. Hunt, D. F.; Yates, J. R.; Shabanowitz, J.; Winston, S.; Hauer, C. R., Protein sequencing by tandem mass spectrometry. Proceedings of the National Academy of Sciences 1986, 83 (17), 6233-6237.
    20. Wells, J. M.; McLuckey, S. A., Collision‐induced dissociation (CID) of peptides and proteins. Methods in enzymology 2005, 402, 148-185.
    21. Mamyrin, B.; Shmikk, D., Linear mass reflectron. Zh. Eksp. Teor. Fiz 1979, 76, 1500.
    22. Ens, W.; Standing, K. G., Hybrid quadrupole/time‐of‐flight mass spectrometers for analysis of biomolecules. Methods in enzymology 2005, 402, 49-78.
    23. Cleveland, D. W.; Fischer, S. G.; Kirschner, M. W.; Laemmli, U. K., Peptide mapping by limited proteolysis in sodium dodecyl sulfate and analysis by gel electrophoresis. Journal of Biological Chemistry 1977, 252 (3), 1102-1106.
    24. Sagliocco, F.; Guillemot, J. C.; Monribot, C.; Capdevielle, J.; Perrot, M.; Ferran, E.; Ferrara, P.; Boucherie, H., Identification of proteins of the yeast protein map using genetically manipulated strains and peptide‐mass fingerprinting. Yeast 1996, 12 (15), 1519-1533.
    25. Yates III, J. R.; Eng, J. K.; McCormack, A. L.; Schieltz, D., Method to correlate tandem mass spectra of modified peptides to amino acid sequences in the protein database. Analytical chemistry 1995, 67 (8), 1426-1436.
    26. Mørtz, E.; O'Connor, P. B.; Roepstorff, P.; Kelleher, N. L.; Wood, T. D.; McLafferty, F. W.; Mann, M., Sequence tag identification of intact proteins by matching tanden mass spectral data against sequence data bases. Proceedings of the National Academy of Sciences 1996, 93 (16), 8264-8267.
    27. Clark, D. F.; Go, E. P.; Toumi, M. L.; Desaire, H., Collision induced dissociation products of disulfide-bonded peptides: ions result from the cleavage of more than one bond. Journal of the American Society for Mass Spectrometry 2011, 22 (3), 492-498.
    28. Zhang, W.; Marzilli, L. A.; Rouse, J. C.; Czupryn, M. J., Complete disulfide bond assignment of a recombinant immunoglobulin G4 monoclonal antibody. Analytical biochemistry 2002, 311 (1), 1-9.
    29. Agarwal, A.; Diedrich, J. K.; Julian, R. R., Direct elucidation of disulfide bond partners using ultraviolet photodissociation mass spectrometry. Analytical chemistry 2011, 83 (17), 6455-6458.
    30. Zhang, Y.; Dewald, H. D.; Chen, H., Online mass spectrometric analysis of proteins/peptides following electrolytic cleavage of disulfide bonds. Journal of proteome research 2011, 10 (3), 1293-1304.
    31. Xia, Y.; Cooks, R. G., Plasma induced oxidative cleavage of disulfide bonds in polypeptides during nanoelectrospray ionization. Analytical chemistry 2010, 82 (7), 2856-2864.
    32. Tang, H. Y.; Speicher, D. W., Determination of Disulfide‐Bond Linkages in Proteins. Current Protocols in Protein Science 2001, 11.11. 1-11.11. 20.
    33. Mhatre, R.; Woodard, J.; Zeng, C., Strategies for locating disulfide bonds in a monoclonal antibody via mass spectrometry. Rapid communications in mass spectrometry 1999, 13 (24), 2503-2510.
    34. Fukuyama, Y.; Iwamoto, S.; Tanaka, K., Rapid sequencing and disulfide mapping of peptides containing disulfide bonds by using 1, 5‐diaminonaphthalene as a reductive matrix. Journal of mass spectrometry 2006, 41 (2), 191-201.
    35. Clark, D. F.; Go, E. P.; Desaire, H., Simple approach to assign disulfide connectivity using extracted ion chromatograms of electron transfer dissociation spectra. Analytical chemistry 2013, 85 (2), 1192-1199.
    36. Wu, S.-L.; Jiang, H.; Hancock, W. S.; Karger, B. L., Identification of the Unpaired Cysteine Status and Complete Mapping of the 17 Disulfides of Recombinant Tissue Plasminogen Activator Using LC− MS with Electron Transfer Dissociation/Collision Induced Dissociation. Analytical chemistry 2010, 82 (12), 5296-5303.
    37. Xu, H.; Zhang, L.; Freitas, M. A., Identification and characterization of disulfide bonds in proteins and peptides from tandem MS data by use of the MassMatrix MS/MS search engine. Journal of proteome research 2007, 7 (01), 138-144.
    38. Murad, W.; Singh, R., : A Software for Determination of Disulfide Bonds Using Multi-Ion Analysis. NanoBioscience, IEEE Transactions on 2013, 12 (2), 69-71.
    39. Huang, S. Y.; Wen, C. H.; Li, D. T.; Hsu, J. L.; Chen, C.; Shi, F. K.; Lin, Y. Y., Assignment of disulfide-linked peptides using automatic a1 ion recognition. Analytical chemistry 2008, 80 (23), 9135-9140.
    40. Wefing, S.; Schnaible, V.; Hoffmann, D., SearchXLinks. A program for the identification of disulfide bonds in proteins from mass spectra. Analytical chemistry 2006, 78 (4), 1235-1241.
    41. Yen, T. Y.; Yan, H.; Macher, B. A., Characterizing closely spaced, complex disulfide bond patterns in peptides and proteins by liquid chromatography/electrospray ionization tandem mass spectrometry. Journal of mass spectrometry 2002, 37 (1), 15-30.
    42. Go, E. P.; Zhang, Y.; Menon, S.; Desaire, H., Analysis of the Disulfide Bond Arrangement of the HIV-1 Envelope Protein CON-S gp140 ΔCFI Shows Variability in the V1 and V2 Regions. Journal of proteome research 2010, 10 (2), 578-591.
    43. Hansen, R. E.; Winther, J. R., An introduction to methods for analyzing thiols and disulfides: Reactions, reagents, and practical considerations. Analytical biochemistry 2009, 394 (2), 147-158.
    44. Yu, Y.-Q.; Gilar, M.; Lee, P. J.; Bouvier, E. S.; Gebler, J. C., Enzyme-friendly, mass spectrometry-compatible surfactant for in-solution enzymatic digestion of proteins. Analytical chemistry 2003, 75 (21), 6023-6028.
    45. Huang, H. Z.; Nichols, A.; Liu, D., Direct identification and quantification of aspartyl succinimide in an IgG2 mAb by RapiGest assisted digestion. Analytical chemistry 2009, 81 (4), 1686-1692.
    46. Rebecchi, K. R.; Go, E. P.; Xu, L.; Woodin, C. L.; Mure, M.; Desaire, H., A general protease digestion procedure for optimal protein sequence coverage and post-translational modifications analysis of recombinant glycoproteins: application to the characterization of human lysyl oxidase-like 2 glycosylation. Analytical chemistry 2011, 83 (22), 8484-8491.
    47. Hsu, J.-L.; Huang, S.-Y.; Chow, N.-H.; Chen, S.-H., Stable-isotope dimethyl labeling for quantitative proteomics. Analytical chemistry 2003, 75 (24), 6843-6852.
    48. Hsu, J.-L.; Huang, S.-Y.; Shiea, J.-T.; Huang, W.-Y.; Chen, S.-H., Beyond quantitative proteomics: signal enhancement of the a1 ion as a mass tag for peptide sequencing using dimethyl labeling. Journal of proteome research 2005, 4 (1), 101-108.

    無法下載圖示 本全文未授權公開
    QR CODE