研究生: |
賴盈任 Ying-Ren Lai |
---|---|
論文名稱: |
理論計算探討乙醇於Rh/γ-Al2O3(110)表面上之吸附結構與脫氫的反應機構 Computational Studies of the Adsorption Configurations and Dehydrogenation Mechanisms of Ethanol on the Rh/γ-Al2O3(110) Surface |
指導教授: |
何嘉仁
Ho, Jia-Jen 林倫年 Hayashi Michitoshi |
學位類別: |
碩士 Master |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 60 |
中文關鍵詞: | 蒸氣重組 、氫氣 、氧化鋁 、乙醇 、吸附 |
英文關鍵詞: | steam reforming, hydrogen, Al2O3, ethanol, adsorption |
論文種類: | 學術論文 |
相關次數: | 點閱:300 下載:23 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
利用periodic DFT的計算方法, 我們探討乙醇於Rh/γ-Al2O3(110)表面之吸附結構與分解路徑。相較於乙醇吸附於Rh上的結果,乙醇吸附於表面的鋁離子上具有較好的吸附能,然而此酸性性質的γ-Al2O3載體會幫助乙醇脫水形成乙烯,因此我們考慮了其他的吸附結構來探討乙醇的分解路徑。由乙醇以α碳端吸附於Rh原子上的結構作為起始架構,相繼的反應路徑為脫附兩個α氫原子;能障分別為2.59與7.35 kcal/mol。下一步驟的脫氫反應是脫附O-H之氫形成中間產物CH3C(a)O + 3H(a),所需克服的能障為10.13 kcal/mol,由此中間產物斷去C-C鍵,所需克服的能障為12.06 kcal/mol,形成C(a)H3 + C(a)O + 3H(a)等中間產物吸附於表面,於此所計算的乙醇分解路徑,在實驗上有類似的觀察結果。
We applied periodic density-functional theory (DFT) to investigate the adsorption configurations and decomposition paths of ethanol on a Rh/γ-Al2O3(110) surface. Adsorption of ethanol onto a Al atom in the surface performs a larger adsorption energy than it adsorbed onto a Rh atom. But it is well known that the acidic support, γ-Al2O3 promotes dehydration of ethanol to ethylene. Therefore, we consider another ethanol adsorption configuration for the calculation of ethanol dehydrogenation pathways. In this configuration, ethanol adsorbed onto a Rh via α-cabon, two α-hydrogen atoms from ethanol are first eliminated; the barriers for abstraction of this two α-hydrogen atoms are calculate to be 2.59 and 7.35 kcal/mol, respectively. The dehydrogenation continues with the loss of one hydrogen from the O-H, forming an intermediate species CH3C(a)O + 3H(a), for which the successive barrier is 10.13 kcal/mol. Cleavage of the C-C bond occurs at this stage with a dissociation barrier Ea = 12.06 kcal/mol, to form C(a)H3 + C(a)O + 3H(a). The aforementioned reaction mechanism was also proposed and discussed by experiment.
(1) Makgoba, N.P.; Sakuneka, T.M.; Koortzen, J.G.; van Schalkwyk, C.; Botha, J.M.; Nicolaides, C.P. Appl. Catal., A 2006, 297, 145.
(2) Yaripour, F.; Baghaei, F.; Schmidt, I.; Perregaard, J. Catal. Commun. 2006, 6, 147.
(3) Prins, R. Handbook of Heterogeneous Catalysis, Vol. 4; Wiley-VHC: Weinheim, 1997.
(4) Ammendola, P.; Chirone, R.; Ruoppolo, G.; Russo, G. J. Mol. Catal. A 2007, 266, 31.
(5) Dömök, M.; Tóth, M.; Raskó, J.; Erd o˝helyi, A. Appl. Catal., B 2007, 69, 262.
(6) Fajardo, H.V.; Probst, L.F.D. Appl. Catal., A 2006, 306, 134.
(7) Cavallaro, S.; Chiodo, V.; Freni, S.; Mondello, N.; Frusteri, F. Appl. Catal., A 2003, 249, 119.
(8) Cavallaro, S.; Chiodo, V.; Vita, A.; Freni, S. J. Power Sources 2003, 123, 10.
(9) Cavallaro, S. Energy Fuels 2000, 14, 1195.
(10) Breen, J. P.; Burch, R.; Coleman, H. M. Appl. Catal., B 2002, 39, 65.
(11) Fierro, V.; Akdim, O.; Mirodatos, C. Green Chem. 2003, 5, 20.
(12) Liguras, D. K.; Kondarides, D. I.; Verykios, X. E. Appl. Catal., B 2003, 43, 345.
(13) Momirlana, M.; Veziroglub, T. N. Int. J. Hydrogen Energy 2005, 30, 795.
(14) De Bruijn, F. Green Chem. 2003, 5, 20.
(15) Vaidya, P. D.; Rodrigues, A. E. Chem. Eng. J. 2006, 117, 39.
(16) Duan, S.; Senkan, S. Ind. Eng. Chem. Res. 2005, 44, 6381.
(17) Clayborne, P. A.; Nelson, T. C.; DeVore, T. C. Appl. Catal., A 2004, 257, 225.
(18) Pinto, H. P.; Nieminen, R. M.; Elliott, S. D. Phys. Rev. B 2004, 70, 125402.
(19) Taniike, T.; Tada, M.; Morikawa, Y.; Sasaki, T.; Iwasawa, Y. J. Phys. Chem. B 2006, 110, 4929.
(20) Digne, M.; Sautet, P.; Raybaud, P.; Euzen, P.; Toulhoat, H. J. Catal. 2004, 226, 54.
(21) Sun, M.; Nelson, A.E.; Adjaye, J. J. Phys. Chem. B 2006, 110, 2310.
(22) De Vito, D. A.; Gilardoni, F.; Kiwi-Minsker, L.; Morgantini, P.-Y.; Porchet, S.; Renken, A.; Weber, J. W. J. Mol. Struct.: THEOCHEM 1999, 469, 7.
(23) Cai, S.; Sohlberg, K. J. Mol. Catal. A 2003, 193, 157.
(24) Greeley, J.; Mavrikakis, M. J. Am. Chem. Soc. 2004, 126, 3910.
(25) Alcalá, R.; Mavrikakis, M.; Dumesic, J. A. J. Catal. 2003, 218, 178.
(26) Chen, H.-L.; Liu, S.-H.; Ho, J.-J. J. Phys. Chem. B 2006, 110, 14816.
(27) White, J. A.; Bird, D. M. Phys. Rev. B 1994, 50, 4954.
(28) Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K.A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Phys. Rev. B 1992, 46, 6671.
(29) Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558.
(30) Kresse, G.; Furthmuller, J. Comp. Mater. Sci. 1996, 6, 15.
(31) Kresse, G.; Hafner, J. Phys. Rev. B 1996, 54, 169.
(32) (a)Blochl, P. E. Phys. Rev. B 1994, 50, 17953. (b) Kresse, G.; Joubert, D. Phys. Rev. B 1999, 59, 1758.
(33) Clotet, A.; Pacchioni, G. Surf. Sci. 1996, 346, 91.
(34) Wilson, S. J. J. Solid. State Chem. 1979, 30, 247.
(35) Beaufils, J. P.; Barbaux, Y. J. Chim. Phys. 1981, 78, 347.
(36) Nortier, P.; Fourre, P.; Mohammed Saad, A. B.; Saur, O.; Lavalley, J. C. Appl. Catal. 1990, 61, 141
(37) Lide, D. R., Ed. In CRC Handbook of Chemistry and Physics, 3rd electronic ed.; C RC Press: Boca Raton, FL, 2000.
(38) Zecchina, A.; Platero, E. E.; Arean. C. O. J. Catal. 1987, 107 ,244.
(39) Morterra, C. ; Bolis, V. ; Magnacca, G. Langmuir 1994, 10, 1812.
(40) Kim, S.; Byl, O.; Yates, J. T., Jr. J. Phys. Chem. B 2006, 110, 4742.
(41) Hendriksen, B. A.; Pearce, D. R.; Rudham, R. J. Catal. 1972, 24, 82.
(42) McHale, J. M.; Navrotsky, A.; Perrotta, A. J. J. Phys. Chem. B 1997, 101, 603.
(43) Kim, S.; Byl, O.; Yates, J. T., Jr. J. Phys. Chem. B 2005, 109, 3499.
(44) Ballinger, T. H.; Yates, J. T., Jr. Langmuir 1991, 7, 3041.
(45) Valero, M. C.; Raybaud, P.; Sautet, P. J. Phys. Chem. B 2006, 110, 1759.
(46) Hartnig, C.; Grimminger, J.; Spohr, E. Electrochim. Acta 2007, 52, 2236.
(47) Bensitel, M.; Moravek, V.; Lamotte, J.; Saur, O.; Lavalley, J.-C. Spectrochim. Acta A 1987, 43, 1487.
(48) Tsyganenko, A. A.; Filimonov, V. N. J. Mol. Struct. 1973, 19, 579.
(49) Sheng, P.-Y.; Yee, A.; Bowmaker, G. A.; Idriss, H. J. Catal. 2002, 208, 393.
(50) Wang, S.-G.; Cao, D.-B.; Li, Y.-W.; Wang, J.; Jiao, H. J. Phys. Chem. B 2006, 110, 9976.
(51) Kolb, G.; Pennemann, H.; Zapf, R. Catal. Today 1994, 20, 409.