簡易檢索 / 詳目顯示

研究生: 郭俊良
Chun-Liang Kuo
論文名稱: 精密網版印刷應用於微熱電致冷器之研製
Development of the micro thermoelectric cooler by precision screen-printing technology
指導教授: 楊啓榮
Yang, Chii-Rong
廖信
Liao, Shin
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 138
中文關鍵詞: 網版印刷熱電材料致冷元件燒結
英文關鍵詞: screen-print, thermoelectric material, cooler, sintering
論文種類: 學術論文
相關次數: 點閱:131下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人類對於產品高頻化、高速化、高功率、低面積、高密度的追求越趨提升,以致高性能電子元件所產生的高熱量,將會嚴重影響到電子元件的特性及運作,如何將電子元件所產生升的高熱量以最快的速度排出,對於系統設計以及製程設計整合工程師而言,將是一項亟待突破的課題。應用網版印刷技術製作高性能微型熱電致元件,除了可以降低生產成本與時間之外,亦能簡化製程有利元件的普及化,如此便能提供高整合、高效能更優質的散熱能力。
    本研究主要分為三大項目:(1) 添加不同金屬材料粉末,在不影響網版的透孔率情況下,改變n-type與p-type熱電漿料的混合比例,對印刷成形之熱電材料膜的特性進行探討;(2) 以網版印刷技術印製熱電材料膜於矽基板上,對其席貝克係數、電阻率與熱傳導值進行特性評估;(3) 應用網版印刷技術,透過雙矽晶圓的方式,採用覆晶粒接合技術進行熱電元件製程的初步測試。實驗結果顯示,於n-type材料Bi2Te3中,若添加了不同比例的Sn,除了能得到較緻密的表面形貌之外,亦能轉變為p-type材料。若在Bi2Te3熱電漿料中添加10 wt.%的Sn,其席貝克係數、電阻率與熱傳導值分別為54.17 uV/K、1.99*10-5 Ohm-m和0.45 W/m-K。在p-type材料Sb2Te3中,添加5 wt.%的Sn,則其席貝克係數、電阻率與熱傳導值分別為98.13 uV/K、2.27*10-5 Ohm-m和0.32 W/m-K,在環境溫度為300 K下,熱電優質可達0.39。由於熱電漿料中添加了金屬Sn粉末,故可將燒結溫度降低至231 deg-C以下,有利於日後以網版印刷的製程方式,製作在聚亞醯胺高分子可撓性基板上,將可大幅提高熱電致冷元件的應用方向。日後若能提高網版印刷製程的品質,那麼便有機會以更快速且低成本的製備技術,達到熱電致冷晶片的普及化與提升市場上之應用。

    Most of today's electronic products draw high frequency, high speed, high power, low area, and high density, which have overheating problems for system designers and engineers. The volume of traditional thermoelectric cooler chips is too big to be integrated with micro-device, and the fabrication processes are complicated and high cost. Screen-printing technique can fabricate thick-film structure of micro-thermoelectric cooler, which are mass production, simple process and low cost technique. It can gain a high quality of heat removal ability by screen-printing technique.
    This research has three points as followed: (1) Percent of different materials content with thermoelectric paste. (2) Using screen-printing technology to fabricate thermoelectric film on silicon substrate, and to measure Seebeck coefficient, electric conductivity, and thermal conductivity. (3) Using screen-printing technology to experiment and discuss process of thermoelectric component fabricated by two-wafer method.
    In this research, thermoelectric density of thick film can be improved, and transform material property of Bi2Te3 from n-type to p-type by adding Sn element. The Seebeck coefficient , electrical resistivity and thermal conductivity are 54.17 uV/K, 1.99*10-5 Ohm-m and 0.45 W/m-K of Bi2Te3 adding with 10 wt.% Sn. The Seebeck coefficient , electrical resistivity and thermal conductivity are 98.13 uV/K, 2.27*10-5 Ohm-m and 0.32 W/m-K of p-type Sb2Te3 adding with 10 wt.% Sn, and the maximum ZT value of 0.39 at 300 K.
    Adding Sn powder can decrease the sintering temperature under 231 deg-C, and this is helpful to print thermoelectric material on flexible substrate (polyimide). In the future, micro thermoelectric cooler with swift, low-cost, and can popularized application can be fabricated by improving the screen printing process quality.

    中文摘要.................................................I 英文摘要................................................II 總目錄.................................................III 表目錄..................................................VI 圖目錄................................................VIII 第一章 緒論.............................................1 1.1 前言..............................................1 1.2 微機電系統簡介....................................2 1.3 網版印刷技術簡介..................................5 1.4 散熱元件簡介......................................6 1.5 研究動機與目的...................................16 1.6 論文架構.........................................17 第二章 文獻回顧與理論探討..............................20 2.1 熱電效應 (Thermoelectric effect).................20 2.1.1 席貝克效應 (Seebeck effect)....................20 2.1.2 帕耳帖效應 (Peltier effect)....................22 2.1.3 湯姆生效應 (Thomson effect)....................23 2.2 熱電優值 (Figure of merit, ZT)...................28 2.3 熱電材料的分類與選擇.............................29 2.4 熱電轉換效能提升之探討...........................33 2.5 熱電材料備製技術分類.............................37 2.6 傳統塊材製造技術.................................37 2.6.1 布里茲曼法...................................37 2.6.2 CZ法.........................................38 2.7 粉末冶金技術.....................................40 2.7.1 熱壓成形法...................................40 2.7.2 熱擠壓成形法.................................40 2.7.3 冷壓加工法...................................41 2.7.4 火花電漿燒結法...............................41 2.8 微加工技術.......................................45 2.8.1 物理氣相沉積法...............................45 2.8.2 化學氣相沉積法...............................46 2.8.3 電化學沉積法.................................47 2.9 網版印刷應用於微機電技術.........................60 2.9.1 印刷技術應用於微機電製程之遠景...............60 2.9.2 網印應用於太陽能電池製作.....................61 2.9.3 網印應用於PZT壓電元件製作....................62 2.9.4 網印應用於熱電元件的製作.....................63 2.10 提升熱電性能之探討..............................72 2.10.1 添加多元材料................................72 2.10.2 添加不同粉末粒徑............................73 2.11 網版印刷之控制條件..............................73 第三章 實驗設計與規劃..................................79 3.1 實驗設計.........................................79 3.1.1 網印熱電材料膜之圖形設計.....................79 3.1.2 微熱電致冷元件之結構設計.....................80 3.2 實驗規劃.........................................84 3.2.1 田口實驗計畫法...............................84 3.2.2 直交表 (Orthogonal arrays, OA)...............85 3.2.3 厚膜熱電材料之實驗規劃.......................86 3.2.4 微熱電致冷元件之實驗規劃.....................87 3.3 實驗設備.........................................94 3.4 結構分析與量測設備..............................103 3.5 材料熱電特性量測................................107 3.5.1 席貝克係數量測方法..........................107 3.5.2 熱傳導值量測方法............................108 3.5.3 導電率量測方法..............................109 第四章 實驗結果與討論.................................115 4.1 印刷成形熱電材料膜之結果討論....................115 4.1.1 熱電材料之組成與特性分析....................115 4.1.2 金屬錫不同添加量對熱電膜之影響..............116 4.1.3 燒結氣氛對熱電膜之影響......................116 4.1.4 燒結溫度對熱電膜之影響......................117 4.1.5 燒結時間對熱電膜之影響......................118 4.2 熱電膜之特性量測................................124 4.3 熱電膜之成分分析................................125 第五章 結論與未來展望.................................128 5.1 結論............................................128 5.2 未來展望........................................129 參考文獻...............................................130

    參考文獻
    1. 楊啟榮 等人, "微機電系統技術與應用", 儀器科技研究中心, (2004).
    2. http://www.topology.com.tw/
    3. 蔡永明, "網版製版印刷實務", 貝星貿易股份有限公司, (1997).
    4. http://www.heatpipe.net.cn/
    5. M. E. H. Tijani, J. C. H. Zeegers, and A. T. A. M. de Waele, "Design of thermoacoustic refrigerators", Cryogenics, (2002) pp. 49-57.
    6. L. Jiang, J. M. Koo, S. Zeng, J. C. Mikkelsen, L. Zhang, P. Zhou, J. G. Santiago, T. W. Kenny, and K. E. Goodson, "Two-phase micro-channel heat sinks for an electrokinetic VLSI chip cooling system", Seventeenth IEEE SEMI-THERM Symposium, (2001) pp. 153-157.
    7. J. M. Koo, L. Jiang, L. Zhang, P. Zhou, S. B. Banerjee, T. W. Kenny, J. G. Santiago, and K. E. Goodson, "Modeling of two-phase microchannel heat sinks for VLSI chips", in Proc. 14th Ann. IEEE Int. MEMS-01 Conf., Interlaken, Switzerland, (2000) pp. 422-426.
    8. S. Wu, J. Mai, Y. C. Tai, and C. M. Ho, "Micro heat exchanger using MEMS impinging jets", IEEE, (1999) pp. 171-176.
    9. C. H. Amon, J. Murthy, S. C. Yao, S. Narumanchi, C. F. Wu, and C. C. Hsieh, "MEMS-enable thermal management of high-heat-flux devices EDIFICE: embedded droplet impingement for intergrated cooling of electronics", Experimental thermal and fluid science, (2001) pp. 231-242.
    10. H. S. Choi, S. Yun, and K. Whang, "Development of a temperature-controlled car-seat system utilizing thermoelectric device", Applied Thermal Engineering, (2007) pp. 2841-2849.
    11. http://electronics-cooling.com/
    12. Y. Avenas, M. Ivanova, N. Popova, C. Schaeffer, and J. L. Schanen, "Thermal analysis of thermal spreaders used in power electronics cooling", IEEE, (2002) pp. 216-221.
    13. J. Kim and E. Golliher, "Steady state model of a micro loop heat pipe", IEEE, (2002) pp. 137-144.
    14. R. Schweickart, L. Ottenstein, B. Cullimore, C. Egan, and D. Wolf, "Testing of controller for a hybrid capillary pumped loop thermal control system", IEEE, (1989) pp. 69-74.
    15. http://www.axsun.com/
    16. http://www.peltier-info.com/
    17. http://www.tf.uni-kiel.de/
    18. Brian C. Sales, "Smaller is cooler", SCIENCE, (2002) pp. 1248-1249.
    19. https://thermalhub.org/
    20. D. M. Rowe, "Thermoelectrics handbook: macro to nano", CRC Press, (2006) pp. 1-8.
    21. http://www.thermoelectrics.caltech.edu/
    22. Kenneth Wark, Donald E Richards, Xinghua Wang, "Thermodynamics", Sixth edition, WCB/McGraw-Hill, (1999) pp. 286-287.
    23. http://www.fkf.mpg.de/
    24. O. Yamashita, S. Tomiyoshi, and K. Makita, "Bismuth telluride compounds with high thermoelectric figures of merit", Journal of Applied Physics, Vol. 93, Issue 1, January 1, (2003) pp. 368-374.
    25. D. B. Hyun, J. S. Hwang, B. C. You, T. S. Oh, and C. W. Hwang, "Thermoelectric properties of the n-type 85 % Bi2Te3 - 15 % Bi2Se3 alloys doped with Sbl3 and CuBr", Journal of Materials Science, Vol. 33, (1998) pp. 5595-5600.
    26. Tea Sung Oh, Dow-Bin Hyun, and N. V. Kolomoets, " Thermoelectric properties of the hot-pressed (Bi,Sb)2(Te,Se)3 alloys", Scripta Materialia, Vol. 42, (2000) pp. 849-854.
    27. http://energisurya.wordpress.com/
    28. Hong Xiao, "Introduction to semiconductor manufacturing technology", Prentice Hall, (2001) pp. 102.
    29. L. D. Ivanova, Y. V. Granatkina, N. V. Polikarpova, and E. I. Smirnova, "Selenium-doped Sb2Te3-Bi2Te3 crystals", Inorganic Materials, Vol. 33, (1997) pp. 558-561.
    30. L. D. Ivanova, Y. V. Granatkina, and N. V. Polikarpova, "Properties of single-crystal in the Sb2Te3-Bi2Te3 solid solution system", Inorganic Materials, Vol. 31, (1995) pp.678-681.
    31. L. D. Ivanova, S. A. Brovikova, H. Sussmann, and P. Reinshaus, "Effect of growth-conditions on the homogeneity of Bi0.5Sb1.5Te3 singal-crystals", Inorganic Materials, Vol. 31, (1995) pp. 682-686.
    32. J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, "Thermoelectric properties of p-type (Bi2Te3)x(Sb2Te3)1-x crystals prepared via zone melting", Journal of Crystal Growth, Vol. 277, (2005) pp. 258-263.
    33. http://www.dynacer.com/
    34. H. C. Kim, S. K. Lee, T. S. Oh, and D. B. Hyun, "Thermoelectric properties of the hot-pressed Bi2(Te,Se)3 alloys with the Bi2Se3 content and addition of scattering center", IEEE, 17th International Conference on Thermoelectric, (1998) pp. 174-177.
    35. D. B. Hyun, J. S. Hwang, J. D. Shim, and T. S. Oh, "Thermoelectric properties of (Bi0.25Sb0.75)2Te3 alloys fabricated by hot-pressing method", Journal of Materials Science, Vol. 36, No. 5, (2001) pp. 1285-1291.
    36. B. Wölfing, C. Kloc1, J. Teubner, and E. Bucher, "High performance thermoelectric Tl9BiTe6 with an extremely low thermal conductivity", Physical Review Letters, Vol. 86, Issue 19, (2001) pp. 4350-4353.
    37. http://www.substech.com/
    38. R. Venkatasubramanian, E. Siivola, T. Colpitts, and B. O'Quinn, "Thin-film thermoelectric devices with high room-temperature figures of merit", Nature, Vol. 413, (2001) pp. 597-602.
    39. J. Seo, D. Lee, C. Lee, and K. Park, " Microstructure, mechanical properties and thermoelectric properties of p-type Te-doped Bi0.5Sb1.5Te3 compounds fabricated by hot extrusion", Journal of Materials Science Letters, Vol. 16, (1997) pp. 1153-1156.
    40. J. Seo, C. Lee, and K. Park, "Thermoelectric properties of n-type SbI3-doped Bi2Te2.85Se0.15 compound fabricated by hot pressing and hot extrusion", Journal of Materials Science Letters, Vol. 35, (2000) pp. 1549-1554.
    41. J. Navratil, Z. Stary, and T. Plechacek, "Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing", Materials Research Bulletin, Vol. 31, No. 12, (1996) pp. 1559-1566.
    42. http://www.shi.co.jp/
    43. D. W. Lee, K. H. Kim, J. Matsushitaa, K. Niiharab, K. H. Auh, and K. B. Shim, "Thermoelectric properties of silicon hexaboride prepared by spark plasma sintering method", Ceramic Processing Research, Vol. 3, No. 3, (2002) pp. 182-185.
    44. J. Jiang, L. Chen, S. Bai, Q. Yao, and Q. Wang, "Thermoelectric properties of textured p-type (Bi,Sb)2Te3 fabricated by spark plasma sintering", Scripta Materialia, Vol. 52, (2005) pp. 347-351.
    45. L. W. da Silva, M. Kaviany, and C. Uher, "Thermoelectric performance of films in the bismuth-tellurium and antimony-tellurium systems", Journal of applied physics, Vol. 97, (2005) pp. 114903.
    46. L. M. Goncalves, J. G. Rocha, C. Couto, P. Alpuim, and J. H. Correia, "On-chip array of thermoelectric Peltier microcoolers", Sensors and actuators A, Vol. 145-146, (2008) pp. 75-80.
    47. 伍秀菁 等人, "真空技術與應用", 儀器科技研究中心, (2001).
    48. D. H. Kim, E. Byon, G. H. Lee, and S. Cho, "Effect of deposition temperature on the structural and thermoelectric properties of bismuth telluride thin films grown by co-sputtering", Thin Solid Films, Vol. 510, (2006) pp. 148-153.
    49. 莊達人, "VLSI製造技術", 高立圖書有限公司, 六版, 民95.
    50. A. Giani, A. Boulouz, F. P. Delannoy, A. Foucaran, and A. Boyer, "MOCVD growth of Bi2Te3 layers using diethyltellurium as a precursor", Thin Solid Films, Vol. 315, (1998) pp. 99-103.
    51. A. Giani, A. Boulouz, F. P. Delannoy, A. Foucaran, E. Charles, and A. Boyer, "Growth of Bi2Te3 and Sb2Te3 thin films by MOCVD", Materials Science and Engineering B, Vol. 64, (1999) pp. 19-24.
    52. A. Boulouz, S. Chakraborty, A. Giani, F. P. Delannoy, and A. Boyer, "Transport properties of V-VI semiconducting thermoelectric BiSbTe alloy thin films and their application to micromodule Peltier devices", Journal of Applied Physics Vol. 89, No. 9, (2001) pp. 5009-5014.
    53. http://int.ch.liv.ac.uk/
    54. J. R. Lim, G. J. Snyder, C. K. Huang, J. A. Herman, M. A. Ryan, J. P. Fleurial, "Thermoelectric microdevice fabrication process and evaluation at the Jet Propulsion Laboratory (JPL)", 21th International Conference of Thermoelectrics, (2002).
    55. G. J. Snyder, J. R. Lim, C. K. Huang, and J. P. Fleurial, "Thermoelectric microdevice fabricated by a MEMS-like electrochemical process", Nature materials, Vol. 2, (2003) pp. 528-531.
    56. G. Leimkűhler, I. Kerkamm, and R. R. Koch, "Electrodeposition of antimony telluride", Journal of The Electrochemical Society, Vol. 149, (2002) pp. 74-478.
    57. C. Wang, Q. Wang, L. Chen, X. Xu, and Q. Yaoa, "Electrodeposition of Sb2Te3 films on Si(100) and Ag substrates", Electrochemical and Solid Letters, Vol. 9, (2006) pp. 147-149.
    58. W. L. Wang, Y. Y. Wang, and C. C. Wan, "Composition control of electrodeposited Bi-Te based on mass-transfer manipulation", Journal of The Electrochemical Society, Vol. 153, (2006) pp. 400-404.
    59. S. Wen, R. R. Corderman, F. Seker, A. P. Zhang, L. Denault, and M. L. Blohm, "Kinetics and initial stages of bismuth telluride electrodeposition", Journal of The Electrochemical Society, Vol. 153, (2006) pp. 595-602.
    60. P. Heo, K. Hagiwara, R. Ichino, and M. Okidob, "Electrodeposition and thermoelectric characterization of Bi2Te3", Journal of The Electrochemical Society, Vol. 153, (2006) pp. 213-217.
    61. S. Michel, N. Stein, M. Schneider, C. BOULANGER, and J. M. Lecuire, "Optimization of chemical and electrochemical parameters for the preparation of n-type Bi2Te2.7Se0.3 thin films by electrodeposition", Journal of Applied Electrochemistry, Vol. 33, (2003) pp. 23-27.
    62. http://www.materialsnet.com.tw/
    63. 許國強, "太陽光發電原理與應用", 工業技術研究院材料所, (2003).
    64. M. Hilali, K. Nakayashiki, A. Ebong, and A. Rohatgi, "High-efficiency (19%) screen-printed textured cells on low-resistivity float-zone silicon with high sheet-resistance emitters", Progress in Photovoltaics, Vol. 14, (2006) pp. 135-144.
    65. S. E. Shaheen, R. Radspinner, N. Peyghambarian, and G. E. Jabbour, "Fabrication of bulk heterojunction plastic solar cells by screen printing", Applied Physics Letters, Vol. 79, No. 18, (2001) pp. 2996-2998.
    66. A. J. Frood, S. P. Beeby, M. J. Tudor, and N. M. White, "Improved registration technique for fabricating thick-film piezoelectric sensors", School of Electronics and Computer Science, University of Southampton.
    67. S. Hirsch, S. Doerner, D. J. Salazar Vélez, R. Lucklum, B. Schmidt, and P. R. Hauptmann, "Thick-film PZT transducers for silicon micro machined sensor arrays", IEEE Conference Proceeding, Oct. 30 2005-Nov. 3 2005.
    68. M. Koch, N. Harris, A. G. R. Evans, N. M. White, and A. Brunnschweiler, "Screen printing of thick piezoelectric PZT layers onto silicon micromachined membranes", IET Conference Proceedings, Nov. 20, (1997).
    69. J. Weber, K. P. Kamloth, F. Haase, P. Detemple, F. Völklein, and T. Doll, "Coin-size coiled-up polymer foil thermoelectric power generator for wearable electronics", Sensors and Actuators A, Vol. 132, (2006) pp. 325-330.
    70. J. Wüsten and P. K. Karin, "Organic thermogenerators for energy autarkic systems on flexible substrates", Journal of Physics D, Vol. 41, (2008) pp. 135113.
    71. U. Bernstein, P. M. Chaikin, and P. Pincus, "Tetrathiafulvalene Tetracyanoquinodimethane (TTF-TCNQ) A Zero-Bandgap Semiconductor", Physical review letters, Vol. 34, (1975) pp. 271-274.
    72. C. N. Chiu, C. H. Wang, and S. W. Chen, "Interfacial Reactions in the Sn-Bi/Te Couples", Journal of Electronic Materials, Vol. 37, No. 1, (2008) pp. 40-44.
    73. T. E. Svechnikova, I. Yu. Nikhezina, and N. V. Polikarpova, "Properties of Bi2Te3 single crystals doped with Sn", Inorganic Materials, Vol. 36, (2000) pp. 765-767.
    74. M. K. Zhitinskaya and S. A. Nemov, "Specific features of Bi2Te3 doping with Sn", Physics of the solid state, Vol.40, (1998) pp. 1428-1432.
    75. L. D. Ivanova, Y. V. Granatkina, and Y. A. Sidorov, "Properties of Sb2Te3 single crystals dopedwith tin, selenium, bismuth", IEEE, (1997) pp. 111-113.
    76. J. Yang, R. Chen, X. Fan, S. Bao, and W. Zhu, "Thermoelectric properties of silver-doped n-type Bi2Te3-based material prepared by mechanical alloying and subsequent hot pressing", Journal of Alloys and Compounds, Vol. 407, (2006) pp. 330-333.
    77. C. H. Lim, K. T. Kim, Y. H. Kim, Y. S. Lee, C. H. Lee, D. C. Cho, and C. H. Lee, "Effect of powder mixing on thermoelectric properties in Bi2Te3-based sintered compounds", ScienceDirect Intermetallics, Vol. 14, (2006) pp. 1370-1374.
    78. G. S. White, C. J. W. Breward, P. D. Howell, and R. J. S. Young, "A model for the screen-printing of Newtonian fluids", Journal of Engineering Mathematics, Vol. 54, (2006) pp. 49-70.
    79. G. Taguchi, G. Taguchi, and Y. Yokoyama, "Taguchi methods: Design of experiments", Japanese Standards Association, Tokyo, (1993).
    80. A. S. Hedayat, N. J. A. Sloane, and John Stufken, "Orthogonal arrays: Theory and applications", Springer, New York, (1999).
    81. F. M. Smits, "Measurements of sheet resistivity with the four-point probe", Bell System Technical Journal, (1958) pp. 711-718.
    82. C. H. Lim, D. C. Cho, Y. S. Lee , and C. H. Lee, "Effects of hydrogen reduction on the thermoelectric properties of spark-plasma-sintered Bi2Te3-based compounds", Journal of the Korean Physical Society, Vol. 46, No. 4, (2005) pp. 995-1000.
    83. M. Akasaka, T. Iida, K. Nishio, and Y. Takanashi, "Composition dependent thermoelectric properties of sintered Mg2Si1-xGex (x= 0 to 1) initiated from a melt-grown polycrystalline source", Thin Solid Films, Vol. 515, (2007) pp. 8237-8241.

    下載圖示
    QR CODE