簡易檢索 / 詳目顯示

研究生: 曹佑民
You-Ming Tsau
論文名稱: 奈米碳管的成長機制與場發射特性研究
Study on Growth Mechanism and Field Emission Properties of Carbon Nanotubes
指導教授: 鄭秀鳳
Cheng, Hsiu-Fung
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2002
畢業學年度: 90
語文別: 中文
論文頁數: 115
中文關鍵詞: 奈米碳管場發射成長機制
英文關鍵詞: Carbon Nanotubes, Field Emission, Growth Mechanism
論文種類: 學術論文
相關次數: 點閱:251下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文共分為三個部份,在第一個部份「選區成長奈米碳管暨成長機制研究」中,使用兩種方法成長奈米碳管(1)微波引致放電製程、(2)鑽石薄膜高壓放電製程。微波引致放電製程能控制奈米碳管成長於電視映像管電子槍的發射頭頂端,所成長的奈米碳管型態,會隨著改變不同催化劑、改變成長時間而發生不同的變化,且場發射亦會因此而改變。這一個製程的奈米碳管成長機制能夠以金屬催化劑的「擴散理論」以及「階段-流成長(step-flow growth)」說明。而鑽石薄膜高壓放電製程,在不使用催化劑下,施加不同電壓,成功成長奈米碳管於選定的放電點。這個製程的奈米碳管成長機制則較類似傳統弧光放電製程。
    第二個部份「微波輔助法成長奈米碳管之臨場可見光發射光譜(OES)研究」,改變製程中的混合氣體比例、微波瓦數,再利用臨場擷取微波輔助法成長奈米碳管時所產生電漿的可見光發射光譜,分析奈米碳管成長時電漿中的物種及電漿溫度,得到在此製程中成長奈米碳管最適當的成長參數條件。
    第三個部份「奈米碳管場發射特性研究」,研究溫度及雷射對於奈米碳管場發射的影響,並且藉由量測樣品的傅利葉轉換紅外光(FTIR)光譜分析樣品的介電常數、導電率,比較場發射特性與介電常數、導電率間的關係。

    In this thesis, it includes three major topics: local area growth control, In-situ spectroscopic characterization, and electron field emission properties of carbon nanotubes (CNTs). In order to control the growth area, “microwave inducing arc discharge” and “high-voltage arc discharge on diamond thin films” were used. It has been successful to grow the carbon nanotubes with gas or liquid catalysts by microwave inducing arc discharge method. The growth mechanism of CNTs by using microwave inducing arc discharge method can be explained by “diffusion growth model” and “step-flow growth model”. By using high-voltage arc discharge method, it can grow the carbon nanotubes on the diamond thin films without catalysts. The growth mechanism of CNTs on diamond thin films by using high-voltage arc discharge is similar to the growth of carbon nanotubes by traditional arc discharge method.
    In order to study the growth mechanism of carbon nanotubes, microwave plasma enhanced CVD was utilized, and the In-situ spectroscopic characterization was proceeded during the growing process. The optical emission spectrum of the microwave enhanced plasma was diagnosed by the optical multi-channel analyzer (OMA) during the growing process. It provides the information about the species and the growth temperature, which are helpful to understand the growth mechanism of CNTs.
    The electron field emission properties of carbon nanotubes, which were synthesized by the microwave heating chemical vaper deportations (MHCVD) method, was measured at various temperatures with lased-irradiation-induced process. The electron field emission properties were improved during the lased-irradiation-induced process. The electrical property of carbon nanotubes was evaluated by using Fourier Transform Infrared (FTIR) spectroscopy. The electron field emission properties and electrical properties were investigated.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖表索引 VIII 第一章 緒論 1 1.1 奈米碳管的發展歷史 1 1.2 奈米碳管的結構 4 1.3 奈米碳管的各種應用及性質 6 1.3.1 強化複合材料及高強度結構體的應用 6 1.3.2 儲氫材料的應用 6 1.3.3 高功率電化學電容的應用 6 1.3.4 顯微鏡(AFM、STM)掃描探針的應用 7 1.3.5 其他方面的應用 8 1.4奈米碳管應用在場發射電子源 9 1.4.1 奈米碳管作為場發射電子源 9 1.4.2應用在場發射平面顯示器 12 1.4.3 應用在真空三極元件 13 1.5 製造奈米碳管主要的幾種製程 14 1.5.1 弧光放電法 14 1.5.2 石墨雷射熱昇華法 15 1.5.3 碳氫化合物的氣相熱分解法 16 1.5.4 化學氣相沉積法及其相關方法 16 1.6 奈米碳管的成長機制 19 1.7 奈米碳管的電子發射理論 29 第2章 研究方法及實驗步驟 34 2.1選區成長奈米碳管暨成長機制研究 35 2.1.1微波引致放電製程 35 2.1.1.1 催化劑的製備 35 2.1.1.2 微波引致放電製程實驗步驟 37 2.1.2鑽石薄膜高壓放電製程 38 2.1.2.1鑽石薄膜高壓放電製程實驗步驟 39 2.2微波輔助法成長奈米碳管之臨場可見光發射光譜(OES)研究 39 2.2.1微波輔助法成長奈米碳管之臨場可見光發射光譜(OES)研究實驗步驟 40 2.3奈米碳管場發射特性研究 41 2.3.1隨溫場發射特性量測步驟 41 2.3.2雷射輔助場發射特性量測步驟 42 2.3.3傅利葉轉換紅外線光譜(Fourier Transform Infrared Spectroscopy,FTIR) 實驗步驟 43 第3章 實驗結果與討論 44 3.1選區成長奈米碳管暨成長機制研究實驗結果與討論 44 3.1.1微波引致放電製程 44 3.1.1.1 不同催化劑對微波引致放電製程的影響 44 3.1.1.2 不同成長時間對微波引致放電製程的影響 52 3.1.1.3微波引致放電製程成長模型 63 3.1.2鑽石薄膜高壓放電製程 67 3.1.2.1鑽石薄膜高壓放電製程SEM結果 67 3.1.2.2鑽石薄膜高壓放電製程成長模型 73 3.2微波輔助法成長奈米碳管之臨場可見光發射光譜(OES)研究結果與討論 76 3.2.1可見光發射光譜分析理論 76 3.2.2固定微波瓦數十瓦,改變混合氣體比例之光譜與分析結果 77 3.2.3固定混合氣體比例(甲烷5%、氬氣95%),改變微波功率的光譜及分析結果 83 3.3奈米碳管場發射特性研究 89 3.3.1隨溫場發射特性 89 3.3.2雷射輔助場發射特性 96 3.3.3傅利葉轉換紅外線光譜 101 3.3.3.1塊材FTIR分析理論 101 3.3.3.2 FTIR分析結果 103 第4章 結論與展望 105 4.1 結論 105 4.2未來展望 107 參考文獻 109 個人發表成果 113

    1. S. Iijima, “Helical microtubules of graphitic carbon”, Nature, 354, pp. 56-58 (1991)
    2. S. Iijima and T. Ichihashi, “Single-shell carbon nanotubes of 1-nm diameter”, Nature, 363, pp. 603-605(1993)
    3. D. S. Bethune, C. H. Kiang, M.S. deVries, G. Gorman, R. Saroy, J. Vazguez, and R. Beyers, “Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layerwalls”, Nature, 363, pp. 605-607 (1993)
    4. M. S. Dresselhaus, G. Dresselhaus, and R. Saito, “Physics of carbon nanotubes”, Carbon, 33, pp. 883-891 (1995)
    5. J. C. Charlier and J. P. Issi, “Electronic structure and quantum transport in carbon nanotubes”, Applied Physics A:Materials Science & Processing, 67, pp. 79-87 (1998)
    6. M. D. Haus, G. Dresselhaus, P. Eklund, and R. Saito, “Carbon nanotubes”, Physics World, January, pp. 33-38 (1998)
    7. J. W. Mintmire and C. T. White, “First-principles band structures of armchair nanotubes”, Applied Physics A: Materials Science & Processing, 67, pp. 65-69 (1998)
    8. L. Jin, C. Bower, and O. Zhou, “Alignment of carbon nanotubes in a polymer matrix by mechanical stretching”, Appl. Phys. Lett., 73 (9), pp. 1197-1199 (1998)
    9. A. C. Dillon, K. M. Jones, T. A. Bekkeclahl, C. K. Kiang, D. S. Bethune, and M. J. Heben, “Storage of hydrogen in single-walled carbon nanotubes”, Nature, 386, pp. 377-379 (1997)
    10. C. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, “High power electrochemical capacitors based on carbon nanotube electrodes”, Appl. Phys. Lett., 70 (11), pp. 1480-1482 (1997)
    11. G. Nagy, M. Levy, R. Scarmozzino, R. M. Osgood, Jr. H. Dai, R. E. Smalley, and G. F. McLane, “Carbon nanotube tipped atomic force microscopy for measurement of <100 nm etch morphology on semiconductors”, Appl. Phys. Lett., 73 (4), pp. 529-531 (1998)
    12. F. Okuyama, T. Hayashi, and Y. Fujimoto, “Formation of carbon nanotubes and their filling with metallic fibers on ion-emitting field anodes”, J. Appl. Phys., 84 (3), pp. 1626-1631 (1998)
    13. H. Ajiki and T. Ando, “Carbon Nanotubes as quantum wires on a cylinder surface”, Solid State Commun., 102, pp. 135-142 (1997)
    14. R. Martel, T. Schmidt, H. R. Shea, T. Hertel, and Ph. Avouris, “Single- and multi-wall carbon nanotube field-effect transistors”, Appl. Phys. Lett., 73 (17), pp. 2447-2449 (1998)
    15. J. M. Planeix, N. Coustel, B. Log, V. Brotons, P. S. Kumbhar, R. Dutarte, P. Geneste, P. Bernier, and P. M. Ajayan, “Application of carbon nanotubes as supports in heterogeneous catalysis”, J. Am. Chem. Soc., 116, pp. 7935-7936 (1994)
    16. L. Chico, V. H. Crespi, L. X. Benedict, S. G. Louie, and M. L. Cohen, “Pure carbon nanoscale devices: nanotube heterojunctions”, Phys. Rev. Lett., 76 (6), pp. 971-974 (1996)
    17. J. Han, A. Globus, R. Jaffe, and G. Deardorff, “Molecular dynamics simulation of carbon nanotube based gears”, Nanotechnology, 8, pp. 95-102 (1997)
    18. A. G. Rinzler, J. H. Hafner, P. Nikolaev, L. Lou, S. G. Kim, D. Tomanek, P. Nordlander, D. T. Colbert, and R. E. Smalley, “Unraveling nanotubes: field emission from an atomic wire”, Science, 269, pp. 1550-1553 (1995)
    19. W. A. de Heer, A. Chatelain, and D. Ugarte, “A carbon nanotube field-emission electron source”, Science, 270, pp. 1179-1180 (1995)
    20. Y. M. Shyu and F. C. N. Hong, “Low-temperature growth and field emission of aligned carbon nanotubes by chemical vapor deposition”, Mater. Chem. Phys., 72, pp. 223-227 (2001)
    21. Y. H. Wang, J. Lin, and C. H. A. Huan, “Macroscopic field emission properties of aligned carbon nanotubes array and randomly oriented carbon nanotubes layer”, Thin Solid Films, 405, pp. 243-247 (2002)
    22. J. Bonard, J. Salvetat, T. Stockli, W. A. De Heer, L. Forro, and A. Chatelain, “Field emission from single-wall carbon nanotube films”, Appl. Phys. Lett., 73 (7), pp. 918-920 (1998)
    23. Q. H. Wang, T. D. Corrigan, J. Y. Dai, and R. P. H. Chang, “Field emission from nanotube bundle emitters at low fields”, Appl. Phys. Lett., 70 (24), pp. 3308-3310 (1997)
    24. S. L. Sung, S. H. Tsai, C. H. Tseng, F. K. Chiang, X. W. Liu, and H. C. Shih, “Well-aligned carbon nanotubes synthesized in anodic alumina by electron cyclotorn resonance chemical vapor deposition”, Appl. Phys. Lett., 74 (2), pp. 197-199 (1999)
    25. Y. Saito and S. Uemura, “Field emission from carbon nanotubes and its application to electron sources”, Carbon, 38, pp. 169-182 (2000)
    26. M. Yumura, S. Ohshima, K. Uchida, Y. Tasaka, Y. Kuriki, F. Ikazaki, Y. Saito, and S. Uemura, “Synthesis and purification of multi-walled carbon nanotubes for field emitter applications”, Diamond and Related Materials, 8, pp. 785-791 (1999)
    27. O. M. Kuttel, O. Groning, C. Emmenegger, L. Nilsson, E. Mallard, L. Diederich, and L. Schlapbach, “Field emission from diamond, diamond-like and nanostructured carbon films”, Carbon, 37, pp. 745-752 (1999)
    28. T. W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tanigaki, “Purification of nanotubes”, Nature, 367, p. 519 (1994)
    29. T. W. Ebbesen and P. M. Ajayan, “Large-scale synthesis of carbon nanotubes”, Nature, 358, pp. 220-221 (1992)
    30. J. M. Lambert, P. M. Ajayan, P. Bernier, J. M. Planeix, V. Brotons, B. Coq, and J. Castaing, “Improving conditions towards isolating single-shell carbon nanotubes”, Chem. Phys. Lett., 226, pp. 364-371 (1994)
    31. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y. H. Lee, S. G. Kim, A. G. Rinzler, D. T. Colbert, G. E. Scuseria, D. Tomanek, J. E. Fischer, and R. E. Smalley, “Crystalline Ropes of Metallic Carbon Nanotubes”, Science, 273, pp. 483-487 (1996)
    32. M. Endo, K. Takeachi, S. Igarashi, K. Kobori, M. Shiraishi, and H. W. Kroto, “The production and structure of pyrolytic carbon nanotubes (PCNTs)”, J. Phys. Chem. Solids, 54, pp. 1841-1848 (1993)
    33. B. C. Statishkumar, A. Govindaraj, and C. N. R. Rao, “Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene-hydrocarbon mixtures: role of the metal nanoparticles produces in situ”, Chem. Phys. Lett., 307, pp. 158-162 (1999)
    34. V. Ivanov, J. B. Nagy, Ph. Lambin, A. Lucas, X. B. Zhang, X. F. Zhang, D. Bernaerts, G. Van Tendeloo, S. Amelinckx, and J. Van Landuyt, “The study of carbon nanotubes produced by catalytic method”, Chem. Phys. Lett., 223, pp. 329-335 (1994)
    35. O. M. Kuttel, O. Groening, C. Emmenegger, and L. Schlapbach, “Electron field emission from phase pure nanotube films grown in a methane/hydrogen plasma”, Appl. Phys. Lett., 73, pp. 2113-2115 (1998)
    36. H. Dai, A. G. Rinzer, P. Nikolaev, A Thess, D. T. Colbert, and R. E. Smalley, “Single-wall nanotubes produced by mental catalyzed disproportionation of carbon monoxide”, Chem. Phys. Lett. 260, pp. 471-475 (1996)
    37. Y. H. Lee, S. G. Kim, and D. Tom&aacute;nek, “Catalytic growth of single-wall carbon nanotubes: an Ab initio study”, Phys. Rev. Lett., 78, pp. 2393-2396 (1997)
    38. Y. K. Kwon, Y. H. Lee, S. G. Kim, P. Jund, D. Tom&aacute;nek, and R. E. Smalley, “Morphology and stability of growing multiwall carbon nanotubes”, Phys. Rev. Lett., 79, pp. 2065-2068 (1997)
    39. N. M. Rodriguez, “A review of catalytically grown carbon nanofibers”, J. Mater. Res., 8, No. 12, pp. 3233-3250 (1993)
    40. R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth”, Appl. Phys. Lett., 4, No. 5, pp. 89-90 (1964)
    41. H. Kanzow and A. Ding, “Formation mechanism of single-wall carbon nanotubes on liquid-metal particles”, Physical Review B, 60, No. 15, pp. 11180-11186 (1999)
    42. O. A. Louchev, Y. Sato, and H. Kanda, “Multiwall carbon nanotubes: Self-organization and inhibition of step-flow growth kinetics”, J. Appl. Phys., 89 (6), pp. 3438-3446 (2001).
    43. O. A. Louchev and Y. Sato, “Nanotube self-organization: Formation by step-flow growth”, Appl. Phys. Lett., 74 (2), pp. 194-196 (1999)
    44. O. A. Louchev, “Surface diffusion growth and stability mechanism of BN nanotubes produced by laser beam heating under superhigh pressures”, Appl. Phys. Lett., 71 (24), pp. 3522-3524 (1997)
    45. R. Kamalakaran , M. Terrones , T. Seeger , Ph. Kohler-Redich , and M. R&uuml;hle , “Synthesis of thick and crystalline nanotube arrays by spray pyrolysis”, Appl. Phys. Lett., 77 (21), pp. 3385-3387 (2000)
    46. S. Bandow , M. Takizawa , K. Hirahara , M. Yudasaka, and S. Iijima , “Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes”, Chem. Phys. Lett., 337, pp. 48-54 (2001)
    47. P. C. Eklund, J. M. Holden, and R. A. Jishi , “Vibrational modes of carbon nanotubes ; spectroscopy and theory”, Carbon , 33, pp. 959-972 (1995)
    48. M. Sveningsson, R. E. Morjan, O. A. Nerushev, Y. Sato, J. Backstrom, E. E. B. Campbell, and F. Rohmund, “Raman spectroscopy and field-emission properties of CVD-grown carbon-nanotube films”, Applied Physics A:Materials Science & Processing, 73, pp. 409-418 (2001)
    49. H. F. Cheng, “In situ spectroscopic examination of plasma emission during excimer laser deposition of Pb0.95La0.05(Zr0.7Ti0.3)0.9875O3 thin films”, Jpn. J. Appl. Phys., 34, pp. 5751-5757 (1995)
    50. H. F. Cheng, “Spectroscopic characteristics of Pb0.95La0.05(Zr1-yTiy)0.9875O3 plasma and growth behavior of thin films by pulsed laser deposition”, J. Appl. Phys., 78 (7), pp. 4633-4639 (1995)
    51. R. C. Weast, CRC HandBook of Chemistry and Physics, p. 10-4 (CRC Press, 1988)
    52. R. C. Weast, CRC HandBook of Chemistry and Physics, p. 10-132 (CRC Press, 1988)
    53. S. Wyckoff and P. A. Wehinger, “Molecular ions in comet tails”, The Astrophysical Journal, 204, pp. 604-615 (1976)
    54. R. L. Newburn and Jr., H. Spinrad, “Spectrophotometry of 17 comets. I. the emission features”, The Astronomical Journal, 89 (2), pp. 289-309 (1984)
    55. K. Swamy, Physics of comets 2nd edition, pp. 64-70 (World Scientific, 1986)
    56. 張志仰,「以微波輔助法在矽基板及針尖上成長奈米碳管的研究」,私立中原大學應用物理所碩士學位論文,中華民國九十年六月,pp. 1-76。
    57. 卓言,「有機鐵催化劑對奈米碳管成長之研究」,國立清華大學材料科學工程研究所碩士論文,中華民國九十年六月,pp. 1-64。

    QR CODE