簡易檢索 / 詳目顯示

研究生: 柯閎仁
論文名稱: 前瞻性奈米矽柱陣列感測器建構在極化鍵控系統之研究
Study of the Novel Sensor Using Si Nanopillars Array Based on PolSK Fiber-Optic System
指導教授: 曹士林
Tsao, Shyh-Lin
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 英文
論文頁數: 131
中文關鍵詞: 光子晶體極化分析光感測器生物檢測
英文關鍵詞: photonic crystal, polarization analyzer, optical sensor, technology, biosensor
論文種類: 學術論文
相關次數: 點閱:316下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本文中我們成功設計並製造出高靈敏光矽柱陣列感測器並利用低成本奈米球微影技術與光輔助電化學離子蝕刻,在本文中的實驗可以證明微小生物分子可以利用極化變化被判別,我們利用生物分子微小的折射率變化引發感測器的強烈極化靈敏度在結合極化鍵控系統來觀察邦加球上極化的改變並判別生物分子,這是個非常有前瞻性的初步實驗,我們相信這個前瞻性的矽柱陣列感測器搭配極化鍵控系統技術應用在生物科技領域上,定可替人類帶來革命性的醫療突破。

In this thesis, we successfully designed and fabricated optical high sensitive sensor using silicon nanopillars array by low-cost self-assembly nanosphere lithography method to generate high aspect ratio silicon nanopillars by reactive ion etching and photo-assisted electrochemical etching. In the demonstration of the experimentation, small bio-molecules can be judged by monitoring the polarization variation. We distinguish the bio-molecules from the slight different changes of refractive index, which caused sensor strongly polarization variation, and observe signal constellation by Poincaré sphere based on Polarization Shift Keying (PolSK) fiber-optic system, which makes the sensors extremely sensitive to the refractive index slightly changed resulting from the infiltration of bio-molecules. This is a very promising value from this preliminary experiment. We believe this novel sensor using Si nanopillars array based on PolSK fiber-optic system technology can bring revolutionary medical treatment to the mankind.

Chapter 1 Introduction.....................................1 Chapter 2 Design and Analysis of the Novel Sensor Using Si Nanopillars array-Based Photonic Crystals..................8 2-1 Introduction of the background.........................9 2-2 Introduction Classical Materials forApplication.......10 2-2-1 Introduction of the Sensor..........................11 2-2-2 Advantages of the Sensor Using Si-Nanopillar Array..12 2-3 Principle of the High Sensitive Sensor Using Si-Nanopillar Array..........................................13 2-3-1 Characteristics and Appearance of the Photonic Crystals..................................................14 2-3-2 Theory of the Polarization..........................16 2-3-3 Working Principle of the Sensor Using Si-Nanopillar Array.....................................................20 2-4 Background Theorem of Beam Propagation Method (BPM), Finite Difference Time Domain (FDTD) Method and Plan Wave Expansion (PWE) Method....................................21 2-4-1 Mathematical Formulation of Beam Propagation Method....................................................22 2-4-1-1 Forward Beam Propagation Method...................22 2-4-2 Mathematical Formulation of Finite Difference Time Domain Method.............................................25 2-4-2-1 Mathematical Formulation of Finite Difference Time Domain Method.............................................26 2-4-3 Plan Wave Expansion (PWE) Method....................31 2-5 Compare and Analysis of the High Sensitive Sensor.....33 2-5-1 Compare and Analyze of Various Structures based on Cubic Arranging...........................................33 2-5-2 Compare and Analyze of Various Structures based on Hexagonal Arranging.......................................35 2-6 Summary...............................................37 Chapter 3 Fabrication of the Novel High Sensitivity Sensor Using Si Nanopillars Array................................58 3-1 Introduction..........................................59 3-1-1 Molecular Self Assembly.............................61 3-1-2 photo-assisted electrochemical etching technology ..62 3-2 Flowchart of Sensor Fabrication, and Introduction of Basic Fabrication Process.................................65 3-3 The Experiment Processes and Measurement Results for Integrated Optical High Sensitivity Sensor Using Si Nanopillars Array Devices.................................71 3-4 Summary...............................................73 Chapter 4 PolSK Fiber-Optic System Measured DNA Sensor....84 4-1 Working Principle of the Sensor Using Si-Nanopillar Array Based on PolSK Fiber-Optic System...................85 4-1-1 Introduction of PolSK fiber-optic system............86 4-1-2 Definition of Stokes Parameters、Stokes Parameters and Poincar'e Sphere......................................89 4-2 Introduction of Measure Bio-molecular DNA Samples.....94 4-3Experimental Results of PolSK Communication with the DNA.......................................................98 4-4 Summary..............................................105 Chapter 5 Conclusions....................................117 References...............................................121

[1] D. Marinova and M. Mcaleer, Nano-technology Patenting in the USA, iEMSs 2002 Proceedings, vol.2, pp.574-579, Jun. 2002.
[2] J. L. West, N. J Halas, “Applications of nanotechnology to biotechnology,” Biotechnol, 2000.
[3] F. Hussain, M. Hojjati, M. Okamoto, and R. E. Gorga, “Review article: Polymer-matrix Nanocomposites, Processing, Manufacturing, and Application: An Overview,” Journal of Composite Materials, pp.1511-1575, 2005
[4] P. H. Bolivar, M. Brucherseifer, M. Nagel, H. Kurz, A. Bosserhoff, and R. Büttner,“Label-free probing of genes by time-domain terahertz sensing,” Phys. Med. Biol., vol. 47, pp. 3815-3821, Oct. 2002.
[5] Z. L. Zhang, C. Crozaiter, M. Le Berre, and Y. Chen, “In situ bio-functionalization and cell adhesion in microfluidic devices,” Microelectronic Eng., vol. 78-79, pp. 556-562, March 2005.
[6] H. Kurt and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” Appl. Phys. Lett., vol. 87, pp. 41108, July 2005.
[7] E. Chow, A. Grot, L. W. Mirkarimi, M. Sigalas, and G. Girolami, “Ultracompactbiochemical sensor built with two-dimensional photonic crystal microcavity,” Opt. Lett., vol. 29, pp. 1093-1095, May 2004.
[8] J. Tidmarsh, S. Fasham, P. Stopford, A. Tomlinson, T. Bestwick, “A narrow linewidth laser for WDM applications using silicon waveguide technology,” IEEE Lasers and Electro-Optics Society, vol. 2, pp. 497-498, 1999.
[9] M. K. Chin, C. A. Youtsey, W. Zhao, T. Pierson, S. L. Wu, Z. Ren, R. Wang, L. Wang, Y. G. Zhao, and S. T. Ho, “Ultra-compact directional couplers and race-track microcavity resonators as building blocks for WDM devices,” in Proc. CLEO'99, Baltimore, MD, May 1999
[10] T. W. Ang, G. T. Reed, A. Vonsovici, A. G. R. Evans, P. R. Routley, M. R. Josey, “Effects of grating heights on highly efficient unibond SOI waveguide grating couplers,” IEEE Photonics Technology Letters, vol. 12, pp. 59-61, 2000.
[11] Y. Hida, Y. Inoue, F. Hanawa, T. Fukumitsu, Y. Enomoto, N. Takato, “Silica-based 1/spl times/32 splitter integrated with 32 WDM couplers using multilayered dielectric filters for fiber line testing at 1.65/spl mu/m,” IEEE Photonics Technology Letters, vol. 11, pp. 96-98, 1999.
[12] J. P. Raskin, A. Viviani, D. Flandre, J. P. Colinge, “Substrate crosstalk reduction using SOI technology,” IEEE Transactions on Electron Devices, vol. 44, pp. 2252-2261, 1997.
[13] K. Srinivasan, P. E. Barclay, and O. Painter, “Fabrication-tolerant high quality factor photonic crystal microcavities,” Opt. Express, vol. 12, pp. 1458-1463, April 2004.
[14] C.R. Lavers, K. Itoh, S.C. Wu, M. Murabayashi, I. Mauchline, G. Stewart, T. Stout “Planar optical waveguides for sensing applications,” Sensors and Actuators B: Chemical, vol. 69, pp. 85-95, 2000.
[15] A. Yalcın, K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, “Optical Sensing of Biomolecules Using Microring Resonators,” IEEE Journal of Selected Topics in Quantum Electeonics, vol. 12, no. 1, Feberuary, 2006
[16] J. Homola, S.S. Yee, G. Gauglitz “Surface plasmon resonance sensors: review,” Sensors and Actuators B: Chemical, vol. 54 , pp. 3-15, 1999.
[17] R. Bernini, S. Campopiano, C. de Boer, P. M. Sarro, Senior and L. Zeni “Planar Antiresonant Reflecting Optical Waveguides as Integrated Optical Refractometer,” IEEE Sensors Journal, vol. 3, no. 5, October, 2003
[18] C. W. Lin, C. L. Lee, W. S. Wang, C. K. Lee, “A Novel Cross-Reference Dual-Window SPR sensor based on single silica optical waveguide,” The Institution of Electrical Engineers, 2004
[19] A. Densmore, D. X. Xu, P. Waldron, S. Janz, P. Cheben, J. Lapointe, A. Delâge, B. Lamontagne, J. H. Schmid, and E. Post, “A Silicon-on-Insulator Photonic Wire Based Evanescent Field Sensor,” IEEE Photonics Technology Letters, vol. 18, no. 23, december, 2006
[20] O. L. J. Pursiainena_ and Jeremy J. Baumberg, “Compact strain-sensitive flexible photonic crystals for sensors,” Plied Physics Letters 87, 101902, 2005
[21] H. Kurt and D. S. Citrin, “Photonic crystals for biochemical sensing in the terahertz region,” Appl. Phys. Lett., vol. 87, pp. 41108, 2005.
[22] A.A.M. Kok, E.J. Geluk, M.J.H. Sander-Jochem, J.J.G.M. van der Tol, Y.S. Oei and M.K. Smit, ”Twodimensional photonic crystals based on InP rods,” Proc. IEEE/LEOS Symposium (Benelux Chapter), pp. 273-276., 2005
[23] S.Y. Lin, J. G. Fleming, E. Chow, “ Two and three dimensional photonic crystals built with VLSI tools,” MRS Bulletin, pp. 627-31, 2001.
[24] R. Martin, A. Sharkawy, E. Kelmelis, J. Fleming, “Photonic crystals reduce the size of optical sensors,” SPIE Connecting minds, 2005.
[25] J. G. Fleming, S.Y., Lin, I., El-Kady, R., Biswas, and K.M., Ho, “All-metallic Three-dimensional Photonic Crystals with a Large Infrared Bandgap,” Nature, pp.52-55, 2002
[26] L. H. Fransen, A. Harpøth, P. Borel, M. Kristensen, J. Jensen, and O. Sigmund,“Broadband photonic crystal waveguide 600 bend obtained utilizing topology optimization,” Opt. Express, vol. 12, pp. 5916-5921, 2004.
[27] J. Janata, A. Bezegh,“Chemical sensors,” Anal Chem, 62R–74R, 1988
[28] M. J. Madou , S. R. Morrison ,“ Chemical sensing with solid state
devices ,” London: Academic Press. pp. 1-9, 1989
[29] A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, and M. Paniccia, “A highspeed silicon optical modulator based on a metal-oxide-semiconductor capacitor,” Nature 427, pp. 615-618, 2004.
[30] K. Takada, M. Abe, M. Shibata, M. Ishii, and K. Okamoto,“Low-crosstalk 10-GHz-spaced 512-channel arrayed waveguide grating multi/demultiplexer fabricated on a 4-in wafer,” Phot. Tech. Lett., pp. 1182-1184, 2001.
[31] S. M. Weiss and P. M. Fauchet, “Thermal tuning of silicon-based one-dimensional photonic bandgap structures,” Phys. Sol. C 2004.
[32] V. Berger, O. Gauthier-Lafaye and E. Costard, “Fabrication of a 2D photonic bandgap by a holographic method,” Electr. Lett. 33, pp. 425-426, 1997.
[33] S. Lan, K. Kanamoto, T. Yang, S. Nishikawa, Y. Sugimoto, N. Ikeda, H. Nakamura, K. Asakawa, H. Ishikawa, “Similar role of waveguide bends in photonic crystal circuits and disordered defects in coupled cavity waveguides: An intrinsic problem in realizing photonic crystal
circuits,” Phys. Rev. B 67, 115208, 2003.
[34] A. Adibi, Y. Xu, R. K. Lee, A. Yariv, and A. Scherer, “Properties of the slab modes in photonic crystal optical waveguides,” J. Lightwave Tech., vol. 18, pp. 1554-1564, 2000.
[35] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett., 1987.
[36] S. Benedetto and P. Poggiolini, “Polarization shift keying: an efficient coherent optical modulation,” Proceeding of SBT/IEEE International Telecommunications Symposium (ITS '90), pp. 2.1.1-2.1.7, 1990.
[37] C. D. Poole, N. S. Bergano, R. E. Wagner, and H. J. Schulte, “Polarization dispersion and principal states in a 147-km undersea lightwave cable,” J. Lightwave Technol., vol. 6, pp. 1185-1190, 1988.
[38] G. Nicholson and D. G. Temple, “Polarilation fluctuation measurements on istalled single-mode optical fiber cables,” J. Lightwave Technol., vol. 7, p. 1197, 1989.
[39] S. Benedetto and P. Poggiolini, “Performance evaluation of polarization shift keying modulation schemes,” Electron. Lett., vo1. 26, pp. 244-246, 1990.
[40] E. Dietrich, “Heterodyne transmission of a 560 mbit/s optical signal by means of polarization shift keying,” Electron. Lett., vol. 23, pp. 421-422, 1987.
[41] S. Benedetto and P. Poggiolini, “Multilevel polarization shift keying: Optimum receiver structure and performance evaluation,” IEEE Trans. Commun., vol. 42, pp. 1174-1186, 1994.
[42] A.O. Dal Forno, A. Paradidi, R. Passy, and J. P. von der eid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” IEEE Photon. Technol. Lett., vol. 12, no. 3, pp. 296-298, 2000.
[43] F. Le Roy-Brehonnet and B. Le Jeune, “Utilization of mueller matrix formalism to obtain optical targets depolarization and polarization,” Proceedings of Quantum Electronics, vol. 21, pp. 109-151, 1997.
[44] M. Hill, A. Massara, M. Gioannini,R. V. Penty, and I. H. White, “Performance of single mode laser components using 2D photonic lattice reflectors,” LEOS 2001, pp. 7–8, 2001.
[45] J. L. Hyuek, S. J. B. Yoo, V. K. Tsui, S. K. H. A. Fong, “A simple all-optical label detection and swapping technique incorporating a fiber Bragg grating filter,” IEEE Photonics Technology Letters, vol. 13, no. 6, pp. 635–637, 2001.
[46] W. Bogaerts, V. Wiaux, D. Taillaert, S. Beckx, B. Luyssaert, P. Bienstman, Associate, and R. Baets, “Fabrication of photonic crystals in silicon-on-insulator using 248-nm deep UV lithography,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 8, no. 4, pp. 928–934, 2002.
[47] E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson and J. D. Joannopoulos, “Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at λ=1.55m wavelengths,” Optics Letters, vol. 26, no. 5, pp. 286-288, 2001.
[48] M. Notomi, A. Shinya, I. Yokohama, K. Yamada, J. Takahashi, and C. Takahashi, “2-D SOI photonic crystal slab and line-defect waveguide,” Proceeding of IEE Laser and Electro-Optics Society (LEOS 2001 14th Annual Meeting), vol. 2, pp. 574-575, Nov. 2001.
[49] M. Koshiba, Y. Tsuji, and M. Hikari, “Time-domain beam propagation method and its application to photonic crystal circuits,” IEEE Journal of Lightwave Technology, vol. 18, no. 1, pp. 102-110, 2000.
[50] M. Koshiba, “Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,” IEEE Journal of Lightwave Technology, vol. 19, no. 12, pp. 1970-1975, 2001.
[52] K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media,” IEEE Transactions on Antennas and Propagation, vol. AP-14, no. 3, pp. 302–307, 1966.
[53] C. Sai-Tak and S. K. Chaudhuri, “A finite-difference time-domain method for design and analysis of guided-wave optical structures,” IEEE Journal of Lightwave Technology, vol. 7, no. 12, pp. 2033-2038, 1989.
[54] K. Sakoda, “Optical Properties of Photonic Crystals,” Japan: Hokkaido University, 2001.
[55] L. Shawn-Yu, “Photonic Crystals and their Optoelectronic Applications,” San Jose: SPIE- The International Society for Optical Engineering, 2003.
[56] J. Arentoft, T. Serndergaard, M. Kristensen, A. Boltasseva, M. Thorhauge and L. Frandsen “Low-loss silicon-on-insulator photonic crystal waveguides,” Electronics Letters, 2002.
[57] Y. Tanaka, Y. Tomoyasu, S. Tamura “Band structure of acoustic waves in phononic lattices: Two-dimensional composites with large acoustic mismatch,” Physical Review B, 2000.
[58] P. R. Villeneuve, S. Fan, A, Mekis, and J. D. Joannopoulos, “Photocic crystals and their potential applications,” IEE Colloquium on Semiconductor Optical Microcavity Devices and Photonic Bandgaps (Digest No. 1996/267), pp. 1/1-1/7, 5, Dec., 1996.
[59] J. R. Daniel, L. Kuo-Yi, G. S. Petrich, P. R. Villeneuve, F. Shanhui, E. R. Thoen, J. D. Joannopoulos, E. P. Ippen, and L. A. Koldziejski, “One-dimensional photonic bandgap microcavities for strong optical confinement in GaAs and GaAs/AlxOy semiconductor waveguides,” IEEE Journal of Lightwave Technology, vol. 17, no. 11, pp. 2152-2160, 1999.
[60] C. C. Jerry, Hermann A. Haus, F. Shanhui, P. R. Villeneuve, and J. D. Joannopoulos, “Optical filters from photonic band gap air bridges,” IEEE Journal of Lightwave Technology, vol. 14, no. 11, pp. 2575-2580, 1996.
[61] H. A. Haus, S. Fan, J. S. Foresi, P. R. Villeneuve, J. D. Joannopoulos, and B. S. Little, “Optical-wavelength-scale filter,” Conference Proceedings of IEEE Lasers and Electro-Optics Society Annual Meeting (LEOS’07 10th Annual Meeting), vol. 2, pp. 96-97, 10-13, Nov. 1997.
[62] A. D. Ormonde, E. C. Hicks, J. Castillo and R. P. Van Duyne “Nanosphere lithography: fabrication of large area Ag nanoparticle arrays by convective self-assembly and their characterization by scanning UV–vis extinction spectroscopy,” Longmuir, pp. 6927-31, 2004
[63] M. Albrecht, G. Hu, I. L. Guhr, T. C. Ulbrich, J. Boneberg, P. Leiderer and G. Schatz “Magnetic multilayers on nanospheres,” Nat. Mater. pp. 203-6, 2005
[64] A. V. Whitney, B. D. Myers and R. P. Van Duyne “Sub-100 nm triangular nanopores fabricated with the reactive ion etching variant of nanosphere lithography and angle-resolved nanosphere lithography,” Nano Lett. 4 1507-11, 2004.
[65] P. Jiang and M. J. McFarland “Wafer-scale periodic nanoholearrays templated from two-dimensional nonclose-packed colloidal crystals,” J. Am. Chem. Soc. 127 3710-1, 2005.
[66] J. Rose and D. Baugh “Nanorings nanopillars andnanospikes on Si by modified nanosphere lithography: fabrication and application,” Mater. Res. Soc. Symp. Proc. 832 F7.14.1-14.11, 2004.
[67] H. Ohji, P. T. J. Gennissen, P. J. French and K. Tsutsumi. “Fabrication of a beam-mass structure using single-step electrochemical etching for micro structures (SEEMS),” J. Micromech. Microeng. pp. 440-4, 2000
[68] M. D. B. Chalton and G. J. Parker “Fabrication of high aspect ratio silicon microstructures by anodic etching,” J. Micromech. Microeng. 7 155-8, 1997.
[69] M. D. B. Charlton “High aspect ratio photo-assisted electro-chemical etching of silicon and its application for the fabrication of quantum wires and photonic band structures,” IEE Colloquium (Digest): Proc. IEE Colloquium on Microengineering Applications in Optoelectronics, no. 39, pp. 9/1-9/5, 1996
[70] S. Pourkamali and F. Ayazi “Fully single crystal silicon resonators with deep-submicron dry-etched transducer gaps,” Proc. 17th MEMS Conf. pp. 813-6, 2004.
[71] C. D. Poole, “Statistical treatment of polarization dispersion in single-mode fiber,” Optics Letters, pp. 687-689, 1988.
[72] G. Nicholson and D. G. Temple, “Polarilation fluctuation measurements on istalled single-mode optical fiber cables,” J. Lightwave Technol., vol. 7, pp. 1197, 1989.
[73] S. Benedetto and P. Poggiolini, “Performance evaluation of polarization shift keying modulation schemes,” Electron. Lett., vo1. 26, pp. 244-246, 1990.
[74] E. Dietrich, “Heterodyne transmission of a 560 mbit/s optical signal by means of polarization shift keying,” Electron. Lett., vol. 23, pp. 421-422, 1987.
[75] S. Benedetto and P. Poggiolini, “Multilevel polarization shift keying: Optimum receiver structure and performance evaluation,” IEEE Trans. Commun., vol. 42, pp. 1174-1186, 1994.
[76] A. O. Dal Forno, A. Paradidi, R. Passy, and J. P. von der eid, “Experimental and theoretical modeling of polarization-mode dispersion in single-mode fibers,” IEEE Photon. Technol. Lett., vol. 12, no. 3, pp. 296-298, 2000.
[77] F. L. R. Brehonnet and B. L. Jeune, “Utilization of mueller matrix formalism to obtain optical targets depolarization and polarization,” Proceedings of Quantum Electronics, vol. 21, pp. 109-151, 1997.
[78] J. N. Maran, R. Slavík, S. LaRochelle, and M. Karásek, “Chromatic dispersion measurement using a multiwavelength frequency-shifted feedback fiber laser,” IEEE Trans. Instrum. Meas., vol. 53, pp. 67-71, 2004.
[79] C. Balding, I. Blaby, D. Summers, “A mutational analysis of the ColE1-encoded cell cycle regulator Rcd confirms its role in plasmid stability,” Plasmid, pp. 68–73, 2006.
[80] A. Ymeti, J. Greve, P. V. Lambeck, T. Wink, Stephan W. F. M. van Hövell, Tom, A. M. Beumer, R. R. Wijn, R. G. Heideman, V. Subramaniam, “Fast, ultrasensitive virus detection using a Young interferometer sensor,” Sens. Actuators B, pp. 100-127, 1999.
[81] K. G. Rasmussen, D. A. Ryan, P. S. Mueller “ABlood Glucose Before and After ECT Treatments in Type 2 Diabetic Patients,” Journal of ECT, 2006.
[82] J. E. Stukey, V. M. McDonough and C. E. Martin “The OLE1 gene of Saccharomyces cerevisiae encodes the delta 9 fatty acid desaturase and can be functionally replaced by the rat stearoyl- CoA desaturase gene,” J. Biol. Chem., vol. 265, pp. 20144-20149, 1990.

QR CODE