簡易檢索 / 詳目顯示

研究生: 鐘藝方
Chung, Yi-Fang
論文名稱: 氣候變遷下的水資源供應與產業發展—以新竹科學園區為例
Water Resources Supply and Industrial Development Under Climate Change: A Case Study of Hsinchu Science Park
指導教授: 郭乃文
Kuo, Nae-Wen
口試委員: 郭乃文
Kuo, Nae-Wen
李宗祐
Lee, Tsung-Yu
陳起鳳
Chen, Chi-Feng
口試日期: 2024/06/07
學位類別: 碩士
Master
系所名稱: 地理學系
Department of Geography
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 160
中文關鍵詞: 缺水風險半導體產業新竹科學園區寶山水庫寶山第二水庫物質流分析氣候變遷
英文關鍵詞: Water Shortage Risk, Semiconductor Industry, Hsinchu Science Park, Baoshan Reservoir, Second Baoshan Reservoir, Material Flow Analysis, Climate Change
研究方法: 實驗設計法次級資料分析個案研究法
DOI URL: http://doi.org/10.6345/NTNU202401525
論文種類: 學術論文
相關次數: 點閱:174下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球受到氣候變遷的影響,各地乾旱事件發生的頻率逐漸增加,水資源的供給產生壓力,產業未來將面臨到缺水風險。其中半導體產業需要使用大量的水,以目前高階製程晶片持續發展並擴大設廠的速度,未來半導體產業用水量勢必大幅增加。臺灣新竹科學園區為全球重要的半導體供應區,若未來面臨缺水導致晶片無法及時生產,將使全球晶片供應鏈受到衝擊,因此分析未來竹科可能會面臨到的缺水風險,將能夠幫助政府或是廠商能更好的調配水資源,以降低晶片供應不足的風險與減少產值損失。
    供應新竹科學園區的用水主要以寶山水庫及寶山第二水庫為主,因此本研究利用物質流分析計算在不同氣候變遷模式及兩種用水情境下寶山水庫及寶二水庫 2025-2100年的模擬蓄水量,並分析 2025-2040、2041-2060、2061-2080 與 2081-2100 等四個時期及 4 個 RCP (Representative Concentration Pathway)情境下,各月份寶山水庫及寶二水庫的缺水與減供風險,並量化寶二水庫擴容工程能夠為竹科減少的產值損失。
    研究結果發現,整體趨勢下工業優先情境比起農業優先情境的缺水與減供比例要降低很多。在這兩種用水情境下,RCP6.0 在缺水與減供比例的表現均是最嚴重的情境,RCP8.5 並非為最嚴重情境。農業優先情境下的缺水高峰月份落在 12-2 月,減供高峰月份是 11-2 月;工業優先情境下的缺水高峰月份落在 2-4 月,減供高峰月份是 12-2月。寶二水庫擴容工程未來可有效減少缺水天數,經評估後在工業優先情境的 2061-2080 年最高可以減少每年約 665 億 8195 萬 6500 元的產值損失。本研究之結果可提供政府及新竹科學園區廠商針對未來缺水及減供的風險示警,並建議調適措施之預備時間做為參考。

    As the world is affected by climate change, the frequency of droughts is gradually increasing across various regions, putting pressure on water resources supply. This poses a future risk of water shortage for industries. The semiconductor industry, which particularly requires large amounts of water. With the ongoing development and rapid expansion of advanced chip manufacturing processes, the water consumption in the semiconductor industry is expected to rise significantly. Hsinchu Science Park in Taiwan is a crucial hub for global semiconductor supply region. If chips can’t be produced in time because of future water shortages, the global chip supply chain will be impacted. Therefore, analyzing the potential water shortage risks that the Hsinchu Science Park might face can assist the government and manufacturers better manage water resources, thereby reducing the risk of insufficient chip supply and minimizing economic value damage.
    The water supply for the Hsinchu Science Park primarily relies on Baoshan Reservoir and Second Baoshan Reservoir. This study uses material flow analysis to calculate the simulated water capacity of Baoshan Reservoir and Second Baoshan Reservoir from 2025-2100 under different climate change models and two water usage scenarios. It analyzes the water shortage and supply reduction risks for Baoshan Reservoir and Second Baoshan Reservoir across four periods: 2025-2040, 2041-2060, 2061-2080, and 2081-2100, also under four RCPs (Representative Concentration Pathway) scenarios. It assesses the risks of water shortages and supply reduction for each month in Baoshan Reservoir and Second Baoshan Reservoir. Additionally, the study quantifies the potential reduction in economic value damage for Hsinchu Science Park resulting from the capacity expansion construction of Second Baoshan Reservoir.
    This study results indicate that, overall, the ratio of water shortage days and water supply reduction days of the industrial-priority scenario is significantly lower compared to the agricultural-priority scenario. Among these two water usage scenarios, RCP6.0 exhibits the most severe scenario of the ratio of water shortage days and water supply reduction days, whereas RCP8.5 is not the most severe one. In the agriculture-priority scenario, the peak months of water shortage is from December to February, and the peak months of water supply reduction is from November to February. For the industrial-priority scenario, the peak months of water shortage is from February to April, and the peak months of water supply reduction is from December to February. The capacity expansion construction of Second Baoshan Reservoir is expected to effectively reduce the number of water shortage days in the future, and it might potentially decrease the annual economic value damage by approximately NT$66.581965 billion in 2061-2080 under the industrial-priority scenario. The results of this study can provide the government and manufacturers in Hsinchu Science Park with early warnings of future risks of water shortage and water supply reduction, as well as serve as a reference for the timing of adaptive measures.

    第一章 前言 1 第一節 研究背景與動機 1 第二節 研究目的 4 第二章 文獻回顧 5 第一節 晶片生產與水資源耗用 5 第二節 全球晶片短缺 10 第三節 物質流分析 15 第四節 氣候變遷對水資源的影響 20 第三章 研究設計與方法 24 第一節 研究區 24 第二節 資料蒐集 29 第三節 分析方法 38 第四章 研究結果與討論 45 第一節 流量資料分析 45 第二節 用水情境驗證分析 49 第三節 缺水天數比例 53 第四節 減供天數比例 67 第五節 未來模擬情境與基期之比較 81 第六節 上坪溪流量對寶二水庫缺水之影響 89 第七節 寶二水庫擴容工程效益 95 第五章 結論與建議 106 第一節 結論 106 第二節 建議 109 第三節 研究限制 111 參考文獻 112 附錄 122

    一、中文文獻
    Taiwan Semiconductor Manufacturing Co., Ltd.(2023a)。台積公司 111 年度永續報告書。
    Taiwan Semiconductor Manufacturing Co., Ltd.(2023b)。台積公司 111 年度氣候相關財務揭露報告。
    王苗、刘敏、夏智宏、王凯、向华、秦鹏程、任永建(2016)。基于 SWAT 模型模拟的未来气候变化对洪湖流域水资源影响研究。气象与环境学报,32(4),39-47。https://doi.org/10.3969/j.issn.1673-503X.2016.04.005。
    王業睿(2014)。氣候變遷對新竹地區水資源供需之衝擊評估。國立臺灣海洋大學河海工程學系碩士論文。
    甘偉文(2008)。工業區區內水物質流之調查及其應用課題初探-以五股工業區為案例。國立臺灣大學環境工程學研究所碩士論文。
    行政院經濟建設委員會(2012)。國家氣候變遷調適政策綱領。
    李宗祐(2022)。上坪溪流域水文及非點源污染模式建置以評估氣候變遷與人為活動對河川水量及水質之影響。前瞻的淺山生態系統服務治理:以新竹縣上坪溪流域為例(2/4)。
    李怡璇(2004)。公共投資對製造業、生產者服務業發展之關聯性研究。國立政治大學地政研究所碩士論文。
    李明營、洪浩哲、許晃雄、王品翔(2023)。2020-2021 臺灣百年大旱原因分析。[Causes of the Record-breaking Drought in Taiwan in 2020-2021]。大氣科學,51(1),30-57。https://doi.org/10.53106/025400022023015101002。
    李崇恩、林子羿、董玟慧、郭乃文、闕蓓德(2023)。從生態系統供給服務的角度評估供水短缺對新竹地區工業產值的影響。[Evaluating the Impact of Water Scarcity on Industrial Output Value in Hsinchu Area from the Perspective of Ecosystem Provisioning Services]。科技管理學刊,28(2),101-132。
    周乃昉、吳嘉文(2010)。通用性廣域水資源運用模擬模式。[A Generalized Simulation Model for Regional Water Allocation]。農業工程學報,56(1),1-21。https://doi.org/10.29974/jtae.201003.0001。
    林可凡、胡太山、解鴻年、賈秉靜(2012)。地方產業群聚之演化-以新竹地區為例。[Industrial Cluster Formation and Evolution-The Case of Hsinchu Area]。建築與規劃學報,13(1),45-73。https://doi.org/10.30054/jap.201206.0003。
    林旭信、陳立偉、甘秉玄(2012)。氣候變遷對水資源之衝擊評估-以牡丹水庫為例。[Impact and Assessment on Climate Change to Water Resources in Watershed of Mudan Reservoir]。先進工程學刊,7(2),71-79。https://doi.org/10.29948/jae.201204.0003。
    林妤蓁(2016)。水資源與產業經濟。科學發展,(520),28-31。
    林宗岳(2009)。區域性自來水供需流布之研究-以臺北縣之鄉鎮市為例。國立臺灣大學環境工程學研究所碩士論文。
    林冠州(2022)。氣候變遷下流域環境及永續農業調適策略之制定及評估-以石門水庫上游集水區為例。[Establish the sustainable agriculture adaptation strategies of the basin under climate change-A case of Shihmen Reservoir]。農業工程學報,68(4),63-79。https://doi.org/10.29974/jtae.202212_68(4).0004。
    林裕彬(2013)。台灣地區各水資源分區因應氣候變遷水資源管理調適能力綜合研究。經濟部水利署水利規劃試驗所。
    姚凱富(2008)。物質流分析於河川流域水資源供需及管理之研究─以淡水河流域為例。國立臺北科技大學環境工程與管理研究所碩士論文。
    科技部、中央研究院環境變遷研究中心、交通部中央氣象局、臺灣師範大學地球科學系、國家災害防救科技中心(2021)。IPCC 氣候變遷第六次評估報告之科學重點摘錄與臺灣氣候變遷評析更新報告。
    科技部新竹科學園區管理局(2021)。新竹科學園區(寶山用地)第 2 期擴建計畫環境影響說明書(定稿本)。
    袁子恭(1995)。我国城市缺水问题及其缓解途径。自然资源学报,10(4),315-321。https://doi.org/10.11849/zrzyxb.1995.04.002。
    財團法人中技社(2021)。台灣半導體產業面對國際政經環境變動的挑戰與因應。
    財團法人成大研究發展基金會(2022)。氣候變遷對重要供水水系水源水量影響分析。經濟部水利署水利規劃試驗所。
    國家災害防救科技中心(2018)。臺灣氣候的過去與未來《臺灣氣候變遷科學報告 2017—物理現象與機制》重點摘錄。
    張哲瑋(2021)。大新竹地區水資源調度之研究。國立臺灣海洋大學河海工程學系碩士論文。
    教育部(2020)。永續發展目標(SDGs)教育手冊:臺灣指南。
    連宛渝(2013)。氣象合成與水文模式之發展及因應氣候變遷之供水系統調適能力建構。國立臺灣大學生物環境系統工程學研究所博士論文。
    陳明業(2002)。淡水河水資源系統動力模式與永續管理策略之研究。國立臺灣大學生物環境系統工程學系暨研究所碩士論文。
    陳柏廷(2015)。氣候變遷對大台北地區水資源供需之衝擊評估。國立臺灣海洋大學河海工程學系碩士論文。
    陳郁慈、闕蓓德(2022)。以物質流分析鋼鐵業製程之回顧。中華民國環境工程學會。2022 環境資訊與規劃管理研討會,國立臺灣大學。
    陳潔(2012)。氣候變遷對曾文水庫缺水風險之衝擊。國立成功大學水利及海洋工程學系碩博士班碩士論文。
    陳憲宗、曾宏偉、林錦源、楊道昌、游保杉(2011)。氣候變遷情境下曾文水庫集水區水文乾旱特性推估。[Hydrological Drought in Tseng-Wen Reservoir Basin under Climate Change Scenarios]。農業工程學報,57(3),44-60。https://doi.org/10.29974/jtae.201109.0004。
    童慶斌(2008)。物質流及系統動力模式分析淡水河流域水資源供需情勢。財團法人中技社。
    童慶斌、國家災害防救科技中心、李培芬、林幸助、李明旭、盧虎生、蘇慧貞、張靜貞、詹士樑、許泰文、李河清(2017)。臺灣氣候變遷科學報告
    2017-衝擊與調適面向(總摘要)。國家災害防救科技中心。
    童慶斌、劉子明、林嘉佑、曹榮軒、李明旭(2015)。氣候變遷水資源風險評估與調適決策之探討。土木水利,42(4),30-45。https://doi.org/10.6653/MoCICHE.201508_42(4).0006。
    楊朝仲、張良正、陳昶憲、李漢鏗、葉昭憲、周嫦娥、葉欣誠、何智超(2007)。水資源永續管理系統動力決策支援系統。2007 台灣環境資源永續發展之研討會。
    經濟部(2020)。前瞻基礎建設計畫—水環境建設。桃園-新竹備援管線工程計畫(第 1 次修正)(核定本)。
    經濟部(2023)。水資源領域氣候變遷調適行動方案(112-115 年)(初稿)。
    經濟部水利署(2022)。石門水庫至新竹聯通管工程計畫核定本。
    經濟部水利署(2023)。新竹海水淡化廠工程計畫(核定本)。
    經濟部水利署北區水資源局(2013)。寶山、寶山第二水庫及隆恩堰聯合運用檢討暨新竹地區性水源潛能評估研究。
    經濟部水利署北區水資源局(2021)。寶山第二水庫溢洪道加高規劃與評估。
    經濟部水利署北區水資源局(2022)。新竹縣寶山第二水庫環境影響評估報告書第三次環境影響差異分析報告(定稿)。
    臺灣氣候變遷推估資訊與調適知識平台(2021)。網格化觀測資料與統計降尺度不確定性分析說明。
    劉子明(2010)。氣候變遷對區域水資源衝擊評估整合系統之研究。國立臺灣大學生物環境系統工程學研究所博士論文。
    劉子明、林祺恒、童裕翔、陳正達(2023)。以 TCCIP AR6 統計降尺度日資料探討臺灣未來水資源衝擊。土木水利,50(3),34-42。https://doi.org/10.6653/MoCICHE.202306_50(3).0006。
    劉子明、鄧澤宇、許晃雄(2023)。以高解析度大氣環流模式資料推估氣候變遷下北部水資源之衝擊。土木水利,50(1),10-15。https://doi.org/10.6653/MoCICHE.202302_50(1).0003。
    賴耘盼、李宗祐、邱繼成(2024)。氣候變遷對寶山及寶山第二水庫蓄供水之影響。The 28th International Geographical Conference of Taiwan,國立臺灣
    師範大學。
    戴嘉慧(2010)。氣候變遷對翡翠水庫供水、發電與防洪功能之衝擊評估。國立臺灣大學生物環境系統工程學研究所碩士論文。
    二、英文文獻
    Ahmadi, M., Bozorg-Haddad, O., & Loaiciga, H. (2014). Adaptive Reservoir Operation Rules Under Climatic Change. Water Resources Management, 29. https://doi.org/10.1007/s11269-014-0871-0
    AIT. (2017). Water Technology Industry in Southern Taiwan.
    Arora, M., Yeow, L. W., Cheah, L., & Derrible, S. (2022). Assessing water circularity in cities: Methodological framework with a case study. Resources, Conservation and Recycling, 178, 106042. https://doi.org/https://doi.org/10.1016/j.resconrec.2021.106042
    Aviso, K., Chien, C.-F., Lim, M. K., Tan, R., & Tseng, M.-L. (2021). Taiwan Drought was a Microcosm of Climate Change Adaptation Challenges in Complex
    Island Economies. Process Integration and Optimization for Sustainability, 5. https://doi.org/10.1007/s41660-021-00188-1
    BCG, & SIA. (2021). Strengthening the Global Semiconductor Supply Chain in an Uncertain Era. Boston Consulting Group & Semiconductor Industry Association.
    Bhadoriya, U. P. S., Mishra, A., Singh, R., & Chatterjee, C. (2020). Implications of climate change on water storage and filling time of a multipurpose reservoir in India. Journal of Hydrology, 590, 125542. https://doi.org/https://doi.org/10.1016/j.jhydrol.2020.125542
    Broemme, K., Trinh, V. Q., Greassidis, S., & Stolpe, H. (2018). Material flow analysis for spatiotemporal mine water management in Hon Gai, Vietnam. Risk to Opportunity, 1, 97-103.
    Brunner, P., & Rechberger, H. (2016). Handbook of Material Flow Analysis: For Environmental, Resource, and Waste Engineers. https://doi.org/10.1201/9781315313450
    Brunner, P.H., & Rechberger, H. (2003). Practical Handbook of Material Flow Analysis (1st ed.). CRC Press. https://doi.org/10.1201/9780203507209
    Cayas, A. M., Grepo, C., & Lachica, D. (2021). The Philippines: Your Ally in the Global Chip Race.
    Chen, Y., Zhang, S., & Miao, J. (2023). The negative effects of the US-China tradewar on innovation: Evidence from the Chinese ICT industry. Technovation,123, 102734. https://doi.org/https://doi.org/10.1016/j.technovation.2023.102734
    Cooper, T., Fallender, S., Pafumi, J., Dettling, J., Humbert, S., & Lessard, L. (2011, 16-18 May 2011). A semiconductor company's examination of its water footprint approach. Proceedings of the 2011 IEEE International Symposium on Sustainable Systems and Technology,
    CRED. (2022). 2021 Disasters in numbers. Brussels: CRED; 2022.
    Frost, K., & Hua, I. (2019). “Quantifying spatiotemporal impacts of the interaction of water scarcity and water use by the global semiconductor manufacturing industry”. Water Resources and Industry, 22, 100115. https://doi.org/https://doi.org/10.1016/j.wri.2019.100115
    Ghani, L. A., & Mahmood, N. Z. (2023). Modeling domestic wastewater pathways on household system using the socio-MFA techniques. Ecological Modelling,
    480, 110328. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2023.110328
    Giudici, F., Anghileri, D., Castelletti, A., & Burlando, P. (2021). Descriptive or normative: How does reservoir operations modeling influence hydrological simulations under climate change? Journal of Hydrology, 595, 125996. https://doi.org/https://doi.org/10.1016/j.jhydrol.2021.125996
    Ji, P., Yuan, X., & Jiao, Y. (2023). Future hydrological drought changes over the upper Yellow River basin: The role of climate change, land cover change and reservoir operation. Journal of Hydrology, 617, 129128. https://doi.org/https://doi.org/10.1016/j.jhydrol.2023.129128
    Kamasa, J. (2021). Microchips: Small and Demanded. In F. Merz (Ed.), (Vol. 295): Center for Security Studies (CSS), ETH Zürich.
    KPMG. (2021). Surviving the Silicon Storm.
    Lee, T.-Y., Chiu, C.-C., Chen, C.-J., Lin, C.-Y., & Shiah, F.-K. (2023). Assessing future availability of water resources in Taiwan based on the Budyko framework. Ecological Indicators, 146, 109808. https://doi.org/https://doi.org/10.1016/j.ecolind.2022.109808
    Lin, C.-Y., & Tung, C.-p. (2017). Procedure for selecting GCM datasets for climate risk assessment. Terrestrial, Atmospheric and Oceanic Sciences, 28, 043. https://doi.org/10.3319/TAO.2016.06.14.01(CCA)
    Liu, K.-C. (2014). Examples in Material Flow Analysis. China Steel Technical Report(27), 1-5.
    Massart, D., Smeyers-Verbeke, J., Capron, X., & Schlesier, K. (2005). Visual presentation of data by means of box plots. LC-GC Europe, 18, 215-218.
    Mohammad, W., Elomri, A., & Kerbache, L. (2022). The Global Semiconductor Chip Shortage: Causes, Implications, and Potential Remedies. IFAC-PapersOnLine, 55(10), 476-483. https://doi.org/https://doi.org/10.1016/j.ifacol.2022.09.439
    Montangero, A. (2007). Material Flow Analysis A Tool to Assess Material Flows for Environmental Sanitation Planningin Developing Countries.
    Morrison, J., Morikawa, M., Murph, M., & Schulte, P. (2009). Water Scarcity & Climate Change: Growing Risks for Businesses & Investors. Ceres & The Pacific Institute.
    Narvaez, L., Janzen, S., Eberle, C., & Sebesvari, Z. (2022). Taiwan drought.
    Ning, A., Tziantzioulis, G., & Wentzlaff, D. (2023). Supply Chain Aware Computer Architecture Proceedings of the 50th Annual International Symposium on Computer Architecture, Orlando, FL, USA. https://doi.org/10.1145/3579371.3589052
    Nohara, D., Suzuki, S., & Sato, Y. (2018). Impact assessment of climate change on operation of reservoir systems for water use in Japan.
    Nordin, J., & Stünkel, L. (2022). EU-Taiwan Semiconductor Cooperation: Lopsided Priorities?
    OECD. (2000). Special Session on Material Flow Accounting - Papers and Presentations The 29th meeting of the OECD Working Group on Environmental Information and Outlooks (WGEIO).
    Ramani, V., Ghosh, D., & Sodhi, M. S. (2022). Understanding systemic disruption from the Covid-19-induced semiconductor shortage for the auto industry. Omega, 113, 102720. https://doi.org/https://doi.org/10.1016/j.omega.2022.102720
    Rong, Q., Zhu, S., Yue, W., Su, M., & Cai, Y. (2024). Predictive simulation and optimal allocation of surface water resources in reservoir basins under climate change. International Soil and Water Conservation Research, 12(2), 467-480. https://doi.org/https://doi.org/10.1016/j.iswcr.2023.08.003
    Sang, J., Hou, B., Wang, H., & Ding, X. (2023). Prediction of water resources change trend in the Three Gorges Reservoir Area under future climate change. Journal of Hydrology, 617, 128881. https://doi.org/https://doi.org/10.1016/j.jhydrol.2022.128881
    Sulis, A., & Sechi, G. M. (2013). Comparison of generic simulation models for water resource systems. Environmental Modelling & Software, 40, 214-225.
    https://doi.org/https://doi.org/10.1016/j.envsoft.2012.09.012
    Sun, J., Chen, W., Hu, B., Xu, Y. J., Zhang, G., Wu, Y., Hu, B., & Song, Z. (2023). Roles of reservoirs in regulating basin flood and droughts risks under climate change: Historical assessment and future projection. Journal of Hydrology: Regional Studies, 48, 101453.https://doi.org/https://doi.org/10.1016/j.ejrh.2023.101453
    Tang, J., Song, P., Hu, X., Chen, C., Wei, B., & Zhao, S. (2023). Coupled effects of land use and climate change on water supply in SSP–RCP scenarios: A case study of the Ganjiang River Basin, China. Ecological Indicators, 154, 110745. https://doi.org/https://doi.org/10.1016/j.ecolind.2023.110745
    Teng, T.-Y., Liu, T.-M., Tung, Y.-S., & Cheng, K.-S. (2021). Converting Climate Change Gridded Daily Rainfall to Station Daily Rainfall—A Case Study at Zengwen Reservoir. Water, 13(11), 1516. https://www.mdpi.com/2073-4441/13/11/1516
    Tong, Y., Cai, J., Zhang, Q., Gao, C., Wang, L., Li, P., Hu, S., Liu, C., He, Z., & Yang, J. (2019). Life cycle water use and wastewater discharge of steel production based on material-energy-water flows: A case study in China. Journal of Cleaner Production, 241, 118410. https://doi.org/https://doi.org/10.1016/j.jclepro.2019.118410
    UNCCD. (2022). Drought in numbers 2022 - Restoration for readiness and resilience.
    Ushijima, K., Irie, M., Sintawardani, N., Triastuti, J., Hamidah, U., Ishikawa, T., & Funamizu, N. (2012). Sustainable design of sanitation system based on material and value flow analysis for urban slum in Indonesia. Frontiers of Environmental Science & Engineering, 7. https://doi.org/10.1007/s11783-012-0460-5
    Wang, C.-T., & Chiu, C.-S. (2014). Competitive strategies for Taiwan's semiconductor industry in a new world economy. Technology in Society, 36, 60-73. https://doi.org/https://doi.org/10.1016/j.techsoc.2013.12.002
    Wang, Q., Huang, N., Cai, H., Chen, X., & Wu, Y. (2023). Water strategies and practices for sustainable development in the semiconductor industry. Water
    Cycle, 4, 12-16. https://doi.org/https://doi.org/10.1016/j.watcyc.2022.12.001
    Wang, Q., Huang, N., Chen, Z., Chen, X., Cai, H., & Wu, Y. (2023). Environmental data and facts in the semiconductor manufacturing industry: An unexpected high water and energy consumption situation. Water Cycle, 4, 47-54. https://doi.org/https://doi.org/10.1016/j.watcyc.2023.01.004
    Worku, T. A., Aman, T. F., Wubneh, M. A., & Kifelew, M. S. (2023). Assessment of reservoir performance under climate change: A case study in Shumbrite reservoir, South Gojjam sub-basin, Ethiopia. Scientific African, 19, e01484. https://doi.org/https://doi.org/10.1016/j.sciaf.2022.e01484
    Yang, P., Zhang, S., Xia, J., Chen, Y., Zhang, Y., Cai, W., Wang, W., Wang, H., Luo, X., & Chen, X. (2022). Risk assessment of water resource shortages in the Aksu River basin of northwest China under climate change. Journal of Environmental Management, 305, 114394.https://doi.org/https://doi.org/10.1016/j.jenvman.2021.114394
    Yiougo, L., Koanda, H., Wethe, J., Luthi, C., Yapo, O., & Da, E. (2011). The method of material flow analysis, a tool for selecting sustainable sanitation technology options: The case of Pouytenga (Burkina Faso) (Vol. 145). https://doi.org/10.2495/WRM110601
    Zhang, X., Tian, Y., Dong, N., Wu, H., & Li, S. (2023). The projected futures of water resources vulnerability under climate and socioeconomic change in the Yangtze River Basin, China. Ecological Indicators, 147, 109933. https://doi.org/https://doi.org/10.1016/j.ecolind.2023.109933
    Zhang, X., Yang, H., Zhang, W., Fenicia, F., Peng, H., & Xu, G. (2022). Hydrologic impacts of cascading reservoirs in the middle and lower Hanjiang River basin under climate variability and land use change. Journal of Hydrology: Regional Studies, 44, 101253. https://doi.org/https://doi.org/10.1016/j.ejrh.2022.101253
    Zhang, Y., & Zhu, X. (2023). Analysis of the global trade network of the chip industry chain: Does the U.S.-China tech war matter? Heliyon, 9(6), e17092. https://doi.org/https://doi.org/10.1016/j.heliyon.2023.e17092
    三、中文網站資料
    日經中文網(2022)。瑞薩火災 1 年後,全球半導體採購仍存課題。https://zh.cn.nikkei.com/industry/itelectric-appliance/47993-2022-03-21-11-12-07.html
    台灣自來水公司第三區管理處(2023)。新竹第一淨水場。https://www.water.gov.tw/dist3/Culture/Detail/18988?nodeId=6254
    台灣自來水公司第三區管理處(2024a)。新竹二場。https://www.water.gov.tw/dist3/Culture/Detail/19855?nodeId=6254
    台灣自來水公司第三區管理處(2024b)。寶山淨水場。https://www.water.gov.tw/dist3/Culture/Detail/19856?nodeId=6254#accesskeyL
    台灣循環經濟與創新轉型協會(2018)。物質流分析。https://www.ceita.org.tw/%E7%89%A9%E8%B3%AA%E6%B5%81%E5%88%86%E6%9E%90/
    氣候變遷災害風險調適平台(2024)。臺灣乾旱災害特性。https://dra.ncdr.nat.gov.tw/Frontend/Disaster/RiskDetail/BAL0000022
    國家科學及技術委員會(2015)。有關媒體報導竹科缺水問題,科管局之說明。https://www.nstc.gov.tw/folksonomy/detail/53c84d76-968a-4aff-b586-236449357041?l=ch
    國家科學及技術委員會統計資料庫(2024a)。C-1 產業類別及家數統計。https://wsts.nstc.gov.tw/stsweb/sciencepark/ScienceParkReport.aspx?language=C&quyid=tqindustry01
    國家科學及技術委員會統計資料庫(2024b)。C-3 產業營業額成長情形比較表。https://wsts.nstc.gov.tw/stsweb/sciencepark/ScienceParkReport.aspx?language=C&quyid=tqindustry03
    國家科學及技術委員會統計資料庫(2024c)。G-1 用水量。https://wsts.nstc.gov.tw/STSWeb/sciencepark/ScienceParkReport.aspx?language=C&quyid=tqwater01
    新竹科學圈管理局(2024)。園區產業營業額統計表。https://www.sipa.gov.tw/home.jsp?serno=201006180001&mserno=201001210113&menudata=ChineseMenu&contlink=ap/staticm_view.jsp&level2=Y&ym=202311
    經濟部水利署(2024a)。寶山水庫基本資料。https://www.wra.gov.tw/News_Content.aspx?n=3254&s=19370
    經濟部水利署(2024b)。寶山第二水庫簡介。https://www.wra.gov.tw/News_Content.aspx?n=3254&s=19371
    經濟部水利署北區水資源分署(2023)。上坪溪. https://www.wranb.gov.tw/cp.aspx?n=36730
    經濟部水利署北區水資源分署(2024)。自來水供水統計. https://www.wranb.gov.tw/cp.aspx?n=36744
    經濟部水利署防災資訊網(2024)。台灣地區主要水庫蓄水量報告表. https://fhy.wra.gov.tw/ReservoirPage_2011/StorageCapacity.aspx
    經濟部水利署第二河川分署(2018)。頭前溪流域. https://www.wra02.gov.tw/cp.aspx?n=9905
    經濟部主管法規查詢系統(2024a)。寶山水庫運用要點. https://law.moea.gov.tw/LawContent.aspx?id=FL085258
    經濟部主管法規查詢系統(2024b)。寶山第二水庫運用要點. https://law.moea.gov.tw/LawContent.aspx?id=FL038844
    環境資訊中心(2021)。水利署研究指 2030 年缺水更嚴重 綠色和平:地方政府早知風險卻無行動. https://e-info.org.tw/node/230790
    寶二水庫專網(2023a)。上坪堰. https://web.wra.gov.tw/bao2/cp.aspx?n=7494
    寶二水庫專網(2023b)。隆恩堰. https://web.wra.gov.tw/bao2/cp.aspx?n=7492
    BBC News(2021)。台灣缺水為何吸引了全世界關注,這次到底有多嚴重?https://www.bbc.com/zhongwen/trad/chinese-news-56814382
    Lasers Technology Co., Ltd.(2024)。純水與超純水有哪些差異?https://www.lasers.com.tw/knowledge-detail/135/
    Taiwan Pure Water Technology Co., Ltd.(2024)。半導體相關產業。https://www.taipure.com.tw/tw/service/1/1
    Taiwan Stock Exchange(2015)。台積電一滴水用 3.5 次 回收率逾 87%。https://cgc.twse.com.tw/latestNews/promoteNewsArticleCh/353
    TechNews(2021)。全球晶片荒加劇!三星電子、恩智浦因斷電被迫停產,馬斯克也發飆。https://technews.tw/2021/02/22/power-outage-in-texas-muskalso-criticized-ercot/
    The News Lens(2022)。看懂美國晶片禁令衝擊:供應商人才技術撤離中國、海歸高管紛離職,影響估遍及全球。https://www.thenewslens.com/article/174779Barbiroglio, E. (2021).
    No Water No Microchips: What Is Happening In Taiwan? Forbes. https://www.forbes.com/sites/emanuelabarbiroglio/2021/05/31/no-water-nomicrochips-what-is-happening-in-taiwan/?sh=1b6f2d9722af
    四、英文網站資料
    Fusion Worldwide. (2021). The Global Chip Shortage: A Timeline of Unfortunate Events. https://info.fusionww.com/blog/the-global-chip-shortage-a-timelineof-unfortunate-events
    Knight, W. (2021). The Chip Shortage Is Driving Up Tech Prices—Starting With TVs. WIRED. https://www.wired.com/story/chip-shortage-electronics-prices-tvsdisplays/
    LI, L. (2023). Taiwan braces for drought in key chip hubs again. https://asia.nikkei.com/Business/Business-Spotlight/Taiwan-braces-fordrought-in-key-chip-hubs-again
    Semiconductor Industry Association. (2024). Global Semiconductor Sales Increase 16.3% Year-to-Year in February.https://www.semiconductors.org/globalsemiconductor-sales-increase-16-3-year-to-year-in-february/
    Taylor, E. (2021). How COVID, Climate Change and Trump Created a Global Chip Shortage. https://www.worldpoliticsreview.com/how-covid-climate-changeand-trump-created-a-global-chip-shortage/
    Tech Xplore. (2021). Drought hits Taiwan drive to plug global chip shortage. https://techxplore.com/news/2021-02-drought-taiwan-global-chipshortage.html
    World Semiconductor Trade Statistics. (2023). WSTS Semiconductor Market Forecast Fall 2023. https://www.wsts.org/76/Recent-News-Release

    下載圖示
    QR CODE