研究生: |
穆格銘 Mu, Ko-Ming |
---|---|
論文名稱: |
倒傳遞類神經網路技術應用於太陽能發電預測 Using Back Propagation Neural Network Technology in Solar Power Forecasting |
指導教授: |
呂藝光
Leu, Yih-Guang |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 122 |
中文關鍵詞: | 倒傳遞類神經網路 、太陽能發電預測 、太陽能發電系統 |
英文關鍵詞: | Back Propagation Neural Network, PV system, forecasting |
DOI URL: | https://doi.org/10.6345/NTNU202205125 |
論文種類: | 學術論文 |
相關次數: | 點閱:236 下載:23 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於太陽光電並不會穩定的輸出電力,其原因是太陽光在照射到地球表面的過程中容易受到空氣中的物質所影響,例如雲層、雜質…等。當太陽光照射至太陽光電模組的過程中受到雲層等物質的遮蔽,太陽光電模組會立即降低發電量;太陽光電模組亦會因太陽能電池的材質、溫度、架設的地點以及面向方位而影響發電的效率。
本論文主要目的在於應用倒傳遞類神經網路技術於預測領前1至24小時之太陽能發電量,並分析於台中光電廠之發電預測效果。利用8種不同的輸入組合,架構倒傳遞類神經網路並比較各方法預測效果之優劣,最後選擇其中一種方法進行太陽能發電預測。根據預測結果顯示,加入未來因子之預測方法具有較好的預測結果。
Because solar irradiance is susceptible to clouds and substances in the air, the solar photovoltaic cannot produce stable power output. The power output of a photovoltaic module is influenced immediately when the module is sheltered from the clouds. Besides, the material of solar cell, air temperature, module’s position and orientation also affect the power output of the photovoltaic module.
The main goal of the thesis is to develop the solar power forecasting with 24 hours ahead by applying back-propagation neural network technology. Some different combination inputs of the back-propagation neural network are proposed and their forecasting performances are evaluated. Moreover, comparison results in Taichung solar farm are given. As a result, the better performance is achieved by the inputs with combination of future factors.
[1] 台灣電力公司網站。取自http://www.taipower.com.tw/content/new_info/new_info-b31.aspx?LinkID=8
[2] R. Perez, M. Beauharnois, E. Lorenz, S. Pelland, and J. Schlemmer, “Evaluation of numerical weather prediction solar irradiance forecasts in the US,”in Proc. ASES Annual Conference, Raleigh, NC, USA, May. 2011.
[3] E. Lorenz, J. Hurka, D. Heinemann, and HG. Hans,“Irradiance Forecasting for the Power Prediction of Grid-Connected Photovoltaic Systems,”IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 2, no. 1, Mar. 2009.
[4] P. Mathiesen and J. Kleissl, “Evaluation of numerical weather prediction for intra-day solar forecasting in the continental United States,”Solar Energy, vol. 85, pp.967-977, 2011.
[5] A. Hammer, D. Heinemann, E. Lorenz, and B. Luckehe, “Short-term forecasting of solar radiation: a statistical approach using satellite data,” Solar Energy, vol. 67, No.1-3, pp.139-150, 1999.
[6] CW. Chow, B. Urquhart, M. Lave, A. Dominguez, J. Kleissl, J. Shields, and B. Washom, “Intra-hour forecasting with a total sky imager at the UC San Diego solar energy testbed,”Solar Energy, vol. 85, pp.2881-2893, 2011.
[7] G. Reikard,“Predicting solar radiation at high resolutions: A comparison of time series forecasts,” Solar Energy, vol. 83, pp.342-349, 2009.
[8] P. Bacher, H. Madsen, and HA. Nielsen, “Online short-term solar power forecasting,” Solar Energy, vol. 83, pp.1772-1783, 2009.
[9] J. Boland, Modeling Solar Radiation at the Earth’s Surface: Time Series Modelling of Solar Radiation, pp.283-312, 2008.
[10] Y. Kemmoku, S. Orita, S. Nakagawa, and T. Sakakibara, “Daily Insolation Forecasting Using a Multi-Stage Neural Network” Solar Energy, vol. 66, no. 3, pp.193-199, 1999.
[11] A. Sfetsos and A. Cooknick,“Univariate and multivariate forecasting of hourly solar radiation with artificial intelligence techniques,” Solar Energy, vol. 68, no. 2, pp.169-178, 2000.
[12] G. Mihalakakou, M. Santamouris, and D. N. Asimakopoulos, “The total solar radiation time series simulation in Athens, using neural networks,”Theoretical and Applied Climatology, vol. 66, pp.185-197, Aug, 2000.
[13] F.O. Hocaoglu, O.N. Gerek, and M. Kurban, “Hourly solar radiation forecasting using optimal coefficient 2-D linear filters and feed-forward neural networks,” Solar Energy, vol. 82, pp.714-726, 2008.
[14] A. Mellit, M. Benghanem, and S.A. Kalogirou, “An adaptive wavelet-network model for forecasting daily total solar-radiation”Applied Energy, vol. 83, pp.705-722, 2006.
[15] J. Cao and X. Lin,“Application of the diagonal recurrent wavelet neural network to solar irradiation forecast assisted with fuzzy technique” Engineering Applications of Artificial Intelligence, vol. 21, pp.1255-1263, 2008.
[16] P.R. Gast, "Solar Radiation" in Campen et al., Handbook of Geophysics, McMillan, New York, pp. 14-16 to 16-30, 1960.
[17] M. Iqbal, An Introduction to Solar Radiation, Academic Press, Toronto, Canada, 1983.
[18] C.C. Hu and R.M. White, Solar Cells: From Basic to Advanced Systems, New York, 1983.
[19] 單啟文,“太陽光電板南向最佳傾角及緯度關係之研究與驗證”,國立台灣科技大學建築研究所,博士論文,2009年6月。
[20] R.G. Ross and M. I. Smokler, “Flat-Plate Solar Array Project-Final Report, Vol. VI: Engineering Sciences and Reliability, ” JPL Pub. No. 86-31, 1986.
[21] 王奕鈞,“神經網路應用於地籍坐標轉換之研究”,國立政治大學地政研究所,碩士論文,2006年6月。
[22] 蘇昭安,“應用倒傳遞類神經網路在颱風波浪預報之研究”,國立臺灣大學工程科學與海洋工程學系,碩士論文,2003。
[23] D.E. Rumelhart, G.E. Hinton, and R.J. Williams,“Learning internal representations by error propagation. Parallel Distributed Processing: Exploration in the Microstructures of Cognition 1,”Nature, vol. 323, pp.533-536, Cambridge, 1986.
[24] 蘭雪梅,朱健,黃承明,董德存,“BP網絡的MATLAB實現”,研究與設計:微型電腦應用,vol. 19-1,no .1,pp. 6-8,2003.
[25] I. Reda and A. Andreas, Solar position algorithm for solar radiation applications, NREL, 2008.
[26] 公式參考:http://www.pveducation.org/
[27] M.T. Hagan and M.B. Menhaj, "Training feed-forward networks with the Marquardt algorithm," IEEE Transactions on Neural Networks, Vol. 5, No. 6, pp. 989-993, 1994.
[28] 林震岩,多變量分析-SPSS的操作與應用,智勝文化事業有限公司,2007。
[29] Martin A. Green,應用太陽電池,曹昭陽,狄大衛,五南圖書出版股份有限公司,2009年10月。
[30] 圖片來源:https://commons.wikimedia.org/wiki/File:PVeff(rev150806).jpg
[31] 圖片來源:台邦科技股份有限公司網站http://www.pinotech.com.tw/kyocera.html
[32] 公式來源:Microsoft Excel CORREL函數說明。
[33] 蔡慶賢,“類神經網路在風浪推測上的研究”,國立中興大學土木工程學系,碩士論文,2002。
[34] A.B. Meinel and M.P. Meinel, Applied Solar Energy, 1976.
[35] 鄭名山,“太陽能發電簡介”,物理雙月刊,pp.707-716,29卷,3期,2007年6月。
[36] Adel Mellit and Alessandro Massi Pavan,“A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy”, Solar Energy, vol. 84, pp.807-821, 2010.
[37] A. Yona, T. Senjyu, A.Y. Saber, F. Toshihisa, S. Hideomi and K. Chul-Hwan,“Application of Neural Network to One-Day-Ahead 24 hours Generating Power Forecasting for Photovoltaic System”, IEEE Intelligent Systems Applications to Power Systems , Niigata, 2007, pp.1-6.
[38] F. Wang, Z. Mi, S. Su and H. Zhao,“Short-Term Solar Irradiance Forecasting Model Based on Artificial Neural Network Using Statistical Feature Parameters”, Energies, vol.5, pp.1355-1370, 2012.
[39] S.A. Kalogirou, “Artificial neural networks in renewable energy systems applications: a review”, Renewable and Sustainable Energy Reviews, vol.5, pp.373-401, 2001.