研究生: |
李文同 LI WEN-TUNG |
---|---|
論文名稱: |
TSK模糊控制器之多階化設計 |
指導教授: | 葉榮木 |
學位類別: |
碩士 Master |
系所名稱: |
工業教育學系 Department of Industrial Education |
論文出版年: | 2002 |
畢業學年度: | 90 |
語文別: | 中文 |
論文頁數: | 109 |
中文關鍵詞: | 多階模糊控制器 、遺傳演算法則 、倒單擺系統 、球軸系統 |
英文關鍵詞: | Multistage Fuzzy Logic Controller, Genetic Algorithm, Inverted pendulum System, Ball and Beam System, TSK Model |
論文種類: | 學術論文 |
相關次數: | 點閱:246 下載:3 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究將提出一個TSK Model (Takagi-Sugeno-Kang Model)之多階模糊控制器(Multistage Fuzzy Logic Controller , MSFLC)的設計方法來控制大規模且複雜的系統。此主要目的是在於減少控制器的模糊規則數,使規則的數目僅依據輸出/輸入變數和歸屬函數(Membership Function)的個數而增加,而其增加方式是以二次式比例增加。
多階模糊控制器的三種調整參數包含:規則庫、輸出/輸入變數歸屬函數和調整因子(Scaling Factor),而這些參數是透過實數編碼之遺傳演算法則來搜尋最佳的解。
此研究提供一種有系統的方法來設計多階模糊控制器;而此多階模糊控制器設計主要分為二元數及非對稱性樹兩種架構。最後,將藉由倒單擺系統(Inverted pendulum system)與球軸系統(Ball and Beam System)兩個受控系統來模擬驗證此控制器的性能。其模擬結果顯示此多階模糊控制器可行,並且確實使用較少的模糊規則數。
關鍵字:多階模糊控制器、遺傳演算法則、倒單擺系統、球軸系統
Abstract
This paper proposes TSK (Takagi-Sugeno-Kang) Model approach to design a multistage fuzzy logic controller for large-scale and complex control systems. The main purpose of this paper is to decrease the large number of rules by using multistage fuzzy logic controller, and adopt the real coding genetic algorithm method to design the parameters on the multistage fuzzy controller. The fuzzy rule number of the proposed approach increase only quadratic with the number of inputs and membership function.
There are three kinds of parameters on multistage fuzzy logic controller. It includes the rule base, input/output variables of membership function and scaling factors. They are all designed by real coding Genetic Algorithm.
The proposed approach provides a systematic way to design multistage fuzzy logic controller, and these parameters design can be combined with two kinds of framework (Skew tree and Binary tree). Therefore, there are two kinds of multistage fuzzy logic controllers, and we compared their performance in pendulum-cart system and Ball and Beam system. The simulation results show that the multistage fuzzy logic controller can work and use less fuzzy rules.
Keywords:TSK Model、Multistage Fuzzy Logic Controller、Genetic Algorithm、Inverted pendulum System、Ball and Beam System
參考文獻
英文部份:
[1] C. C. Lee ,〝Fuzzy Logic in Control Systems:Fuzzy Logic Controller— PartⅠ,PartⅡ〞, IEEE Transaction on Systems , Man and Cybernetics , Vol.20 , No.2 , pp.404-434 , 1990
[2] Hung-Pin Chen and Tai-Ming Parng ,〝A new approach of multi-stage fuzzy logic inference〞, Fuzzy Sets and Systems , Vol.78 , No.1 , pp.51-72 , 1996.
[3] Zong-Mu Yeh and Hung-Pin Chen ,〝Multi-stage Inference Fuzzy Logic Control 〞, Proceeding of the sixth IEEE International Conference on Fuzzy Systems , Vol.2 , pp.1153-1158 , 1997.
[4] Jyh-Shing Roger Jang ,〝Adaptive network based fuzzy inference system〞, IEEE Transactions on Systems , Man , and Cybernetics , Vol.23 , No.3 , pp.665-685 , 1993.
[5] K. Uehara and M. Fujise , 〝Multistage fuzzy inference formulated as linguistic truth-value propagation and its learning algorithm based on back-propagating error information〞, IEEE Transactions on Fuzzy Systems , Vol.1 , No.3 , pp.305-317 , 1993
[6] Zong-Mu Yeh ,〝Adaptive multivariable fuzzy logic controller 〞, Fuzzy Sets and Systems , Vol.86 , pp.43-60 , 1997.
[7] C,D.S.〝Knowledge base decoupling in fuzzy logic control systems〞 , Proceeding of the American Control Conference , Vol.1 , pp.760-764 , 1993.
[8] Chen-Wei Xu ,〝Linguistic decoupling control of fuzzy multivariable processes〞, Fuzzy Sets and Systems , Vol.44 , pp.209-217 , 1991.
[9] Lin Shi and Sunil K. Singh ,〝Decentralized adaptive controller design for logic-scale systems with higher order interconnections〞, IEEE Transaction Automatic control , Vol.37 , No.8 , pp.1106-1117 , 1992.
[10] A. E. Gegov and P. M. Frank ,〝Decentralized fuzzy control of multivariable systems by active decomposition of control laws 〞, International Journal Control , Vol.62 , No.4 , pp.781-791 , 1995.
[11] G. V. S. Raju and Jun Zhou ,〝Adaptive hierarchical fuzzy controller〞, IEEE Transactions on Systems , Man , and Cybernetics , Vol.23 , No.4 , pp.973-980 , 1993.
[12] G. V. S. Raju and Jun Zhou and Roger. A. Kisner ,〝Hierarchical fuzzy control〞International Journal Control , Vol.54 , No.5 , pp.1201-1216 , 1991.
[13] T. C. Chin and X. M. Qi ,〝Genetic algorithms for learning the rule base of fuzzy logic controller 〞, Fuzzy Sets and Systems , Vol.97 , pp.1-7 , 1998.
[14] K. F. Man and K. S. Tang ,〝Genetic algorithms:concepts and application〞, IEEE Transactions on Industrial Electronics , Vol.43 , No.5 , 1996.
[15] Jinwoo Kim and B. P. Zeigleru ,〝Designing fuzzy logic controller using a multiresolutional search paradigm〞, IEEE Transactions on Fuzzy Systems , Vol.4 , No.3 , pp.213-226 , 1996.
[16] Y. S. Tarng and Z. M. Yeh and C. Y. Nian ,〝Genetic synthesis of fuzzy logic controllers in turning 〞, Fuzzy Sets and Systems , Vol.83 , pp.301-310 , 1996.
[17] Z. M. Yeh ,〝A Systematic Method for Design of Multivariable Fuzzy Logic Control Systems〞IEEE Transactions on Fuzzy System , Vol.4 , No.3 , pp.215-228 , 1998.
[18] Zong-Mu Yeh and Hung-Pin Chen ,〝 A novel approach for multistage inference fuzzy control〞, IEEE Transactions on Systems , Man , and Cybernetics— part B: Cybernetics , Vol.28 ,No.6 , pp.935-944 , 1998.
[19] T.Suzuki,T.Furuhashi,S.Matsushita,H.Tsutsui,〝GA Search for Fuzzy Models under Multiple-Criteria〞, IEEE International Fuzzy Systems Conference Proceedings, vol.3, p1427-1431 , 1999.
[20] J.Yi,N.Yubazaki,K.Hirota,〝Upswing and Stabilization Control of Inverted Pendulum and Cart System by the SIRMs Dynamically Connected Fuzzy Inference Model 〞, IEEE International Fuzzy Systems Conference Proceedings, vol.1, p400-405 , 1999.
[21] H.Ishibuchi,〝Fuzzy Reasoning Method in Fuzzy Rule-Based Systems with General and Specific Rules for Function Approximation〞, IEEE International Fuzzy Systems Conference Proceedings, vol.1, p198-203 , 1999.
[22] Jianping Zhang and Lan Zhang,〝Learning Fuzzy Concept Prototype Using Genetic Algorithms〞, IEEE International Fuzzy Systems Conference Proceedings, vol.3, p1790-1795 , 1999.
[23] Geuntaek Kang,Wonchang Lee,Michio Sugeno,〝Design of TSK Fuzzy Controller Based on TSK Fuzzy Model Using Pole Placement 〞,IEEE Transactions on Fuzzy Systems , vol.1 , p246-251 , 1998.
[24] Pai-Yi Huang,Sinn-Cheng Lin,Yung-Yaw Chen,〝Real-Coded Genetic Algorithm Based Fuzzy Sliding-Mode Control Design For Precision Positioning〞, IEEE Transactions on Fuzzy Systems , vol.2 , p1247-1252 , 1998.
[25] Hao Ying,〝General Takagi-Sugeno Fuzzy Systems Are Universal Approximators〞, IEEE Transactions on Fuzzy Systems , vol.1 , p819-823 , 1998.
[26] Hao Ying,Yongsheng Ding,Shaokuan Li,Shihuang Shao,〝Typical Takagi-Sugeno and Mamdani Fuzzy Systems as Universal Approximators:Conditions and Comparison〞, IEEE Transactions on Fuzzy Systems , vol.1 , p824-828 , 1998.
[27] Geuntaek Kang,Wonchang Lee,Michio Sugeno,〝Stability Analysis of TSK Fuzzy Systems〞, IEEE Transactions on Fuzzy Systems , vol.1, p555-560 , 1998.
[28] Yangbum Chae,Geuntaek Kang,Wonchang Lee,〝Transformation of TSK Fuzzy System into Fuzzy System with Singleton Consequents and its Application〞, IEEE International Fuzzy Systems Conference Proceedings, vol.2 , p969-973 , 1999.
[29] Choon-Young Lee,Ju-Jang Lee,〝Design of Optimal Controllers for Nonlinear Systems Using Takagi-Sugeno Fuzzy Models〞, IEEE International Fuzzy Systems Conference Proceedings, vol.2 p881-886 , 1999.
[30] C. Dou and J. A Macedo ,〝Complex System Inference-Control and FuzzyLogic Modeling〞, International Journal Control, Vol.65 , No.5 , pp.373-378, 1995.
[31] Jacob S. Glower and Jeffrey Munighan, 〝Designing Fuzzy Control from a Variable Structures Standpoint 〞, IEEE Transactions on Fuzzy Systems , vol.5,p138-144 , 1997.
[32] France Cheong and Richard Lai,〝Constraining the Optimization of a Fuzzy Logic Controller Using an Enhanced Genetic Algorithm〞, IEEE Transactions on Systems , Man , and Cybernetics— part B: Cybernetics ,vol30,p31-46 , 2000.
[33] Lam, H.K., Leung, F.H.F. and Tam, P.K.S. ,〝Design and stability analysis of fuzzy model based nonlinear controller for nonlinear systems using genetic algorithm〞, IEEE International Conference on Fuzzy Systems , Vol.1,p232-237 , 2002.
[34] Mannle,M.,〝Parameter optimization for Takagi-Sugeno fuzzy models-lessons learnt〞, Systems, Man, and Cybernetics, 2001 IEEE International Conference on , Vol. 1,p111-116 , 2001.
[35] Rizk, M.R.M., El-Arabawy, I.F.and Khaddam, H.S. ,〝An algorithm for optimum stability region of fuzzy control systems using genetic algorithms〞, American Control Conference, 2001. Proceedings of the 2001 , Vol.1,p192-197 , 2001.
[36] Chein-Chung Sun, Hung-Yuan Chung and Wen-Jer Chang,〝Design the T-S fuzzy controller for a class of T-S fuzzy models via genetic algorithm〞, Proceedings of the 2002 IEEE International Conference on Fuzzy Systems ,Vol.1,p278-283 , 2002.
中文部份:
[37] 孫宗瀛,楊英魁,〝Fuzzy控制:理論、實作與應用〞,台北:全華圖書,1994。
[38] 陳弘斌,〝高速多階模糊邏輯推理及其數位實施〞,國立台灣大學博士論文,1997。
[39] 林家德,〝植基於傳演算法之模糊控制器在倒立單擺上的應用〞,國立台灣師範大學工業教育研究所碩士論文,1994。
[40] 周益生,〝利用遺傳演算法設計最佳模糊控制器〞,私立中原大學電機工程研究所碩士論文,1995。
[41] 林明隆,〝基於基因演算法的最佳模糊控制器之設計〞,國立中央大學電機工程研究所碩士論文,1996。
[42] 李志山,〝雙節倒單擺之數位控制〞,國立交通大學控制工程研究所碩士論文,1995。
[43] 李桂香,〝植基於遺傳演算法之多階模糊控制器設計〞,國立台灣師範大學工業教育研究所碩士論文,2001。