簡易檢索 / 詳目顯示

研究生: 張鈞普
Jyun-Pu Chang
論文名稱: 利用塊材模型探討CO2還原催化劑上修飾基團與p型半導體之間的關係
A Cluster Model Study on the Interaction between p-type Semiconductor and Anchoring Groups for CO2 Reduction Catalysis
指導教授: 蔡明剛
Tsai, Ming-Kang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 97
中文關鍵詞: 氧化鎳修飾基團
英文關鍵詞: nickel oxide, anchoring group
論文種類: 學術論文
相關次數: 點閱:211下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • CO2藉由催化劑轉換成其他種類的可用化合物一直是科學家研究的目標。下一代的CO2催化劑重點在於利用太陽能將其還原於p型奈米半導體電極,如此可改善一般催化劑系統內需要犧牲電子給體,最終導致耗盡而中止的限制。而化合物與p型奈米半導體電極之間的結合為一研究重點。
    我們藉由設計出p型半導體NiO cluster,先對其做三種anchoring groups分子的優化構型,分別是HCOOH、H3PO3、HCSSH,並探討他們的結構、吸附能等性質。接著將上述的三個分子 接上由Rochford教授所提供含有釕及錸金屬的化合物作為光敏劑,其中分別含有8-oxyquinoline(8-OQN)與bipydine(bpy)作為ligands,研究其吸收光譜、幾何結構等性質。最後我們將催化劑、anchoring groups、NiO cluster全部結合,模擬出一組p型半導體結合光敏劑的部分,並且站在分子和NiO cluster表面的overlap程度的觀點,判斷最好的anchoring group。

    中文摘要 I Abstract II 圖目錄 III 表目錄 VI 第一章 導論 1 1-1 前言 1 1-2 CO2催化介紹 3 1-3 下一代CO2催化系統 5 1-4 Anchoring group 6 1-5 p型半導體 8 第二章 計算原理 11 2-1 量子力學 11 2-2 計算化學的理論及方法 11 2-2-1 分子力學(Molecular Mechanics) 11 2-2-2 第一原理方法(ab initio methods) 12 2-2-3 半經驗法(Semi-Empirical) 12 2-2-4 密度泛函理論(Density Functional Theory) 13 2-2-5 基底函數(Basis Sets)13 2-3 計算方法 17 2-3-1 單點能量(Single point energy) 17 2-3-2 幾何優化(Geometry optimization) 17 2-3-3 溶劑模型(Solvation Model) 19 2-3-4 激發態的計算(Excited state) 20 2-4 本論文使用的計算方法 21 第三章 結果與討論 22 3-1 研究目標 22 3-2 p型半導體的設計與討論 23 3-2-1 固態材料模擬方法 23 3-2-2 NiO的設計 24 3-3 p型半導體與anchoring groups的優化吸附構型 26 3-4 光敏劑的分析 31 3-5 光敏劑的電子躍遷及其吸收光譜分析 35 3-6 結合NiO、anchoring group和光敏劑的探討 81 第四章 結論 90 參考文獻 91

    (1)Gratzel, M. Nature 2000, 403, 363.
    (2)Gratzel, M. Nature 2001, 414, 338.
    (3)Fischer, B. J.; Eisenberg, R. G. Journal of the American Chemical Society 1980, 102, 7361.
    (4)Beley, M.; Collin, J. P.; Ruppert, R.; Sauvage, J. P. Journal of the American Chemical Society. 1986, 108, 7461.
    (5)Hammouche, M.; Lexa, D.; Momenteau, M.; Saveant, J. M. Journal of the American Chemical Society. 1991, 113, 8455.
    (6)Bhugun, I.; Lexa, D.; Saveant, J. M. Journal of the American Chemical Society. 1996, 118, 1769.
    (7)Grodkowski, J.; Neta, P.; Fujita, E. Journal of Physical Chemistry A. 2002, 106, 4772.
    (8)Hawecker, J.; Lehn, J. M.; Ziessel., R. Journal of the Chemical Society Chemical Communications. 1984, (6), 328.
    (9)Ishida, H.; Tanaka, K.; Tanaka, T. Organometallics. 1987, 6, 181.
    (10)Nagao, H.; Mizukawa, T.; Tanaka, K. Inorganic Chemistry . 1994, 33 (15), 3415.
    (11)Bruce, M. R. M.; Megehee, E.; Sullivan, B. P.; Thorp, H. H.; Otoole, T. R.; Pugh, A. D. J. R.; Meyer., T. J. Inorganic Chemistry . 1992, 31 (23), 4864.
    (12)Bolinger, C. M.; Story, N.; Meyer., B. P. S. T. J. Inorganic Chemistry. 1988, 27 (25), 4582.
    (13)Haines, R. J.; Wittrig, R. E.; Kubiak., C. P. Inorganic Chemistry. 1994, 33 (21), 4723.
    (14)Delaet, D. L.; Delrosario, R.; Fanwick, P. E.; Kubiak., C. P. Journal of the American Chemical Society. 1987, 109 (3), 754.
    (15)Slater, S.; Wagenknecht., J. H. Journal of the American Chemical Society. 1984, 106 (18), 5367.
    (16)Raebiger, J. W.; Turner, J. W.; Noll, B. C.; Curtis, C. J.; Miedaner, A.; Cox, B.; DuBois., D. L. Organometallics. 2006, 25 (14), 3345.
    (17)Amanda J.Morris;Gerald J.Meyer;Etsuko Fujita Accounts of chemical research. 2009,42(12),1983
    (18)Oregan, B.; Gratzel, M. A Low-Cost, High-Efficiency Solar Cell Based on Dye-Sensitized Colloidal TiO2 films. Nature 1991, 353, 737.
    (19)Jacquemin, D.; Wathelet, V.; Perpete, E. A.; Adamo, C. Extensive TD-DFT Benchmark: Singlet-Excited States of Organic Molecules. J. Chem. Theory Comput. 2009, 5, 2420.
    (20)Schiffmann, F.; VandeVondele, J.; Hutter, J.; Wirz, R.; Urakawa, A.; Baiker, A. Protonation-Dependent Binding of Ruthenium Bipyridyl Complexes to the Anatase(101) Surface. J. Phys. Chem. C 2010, 114, 8398.
    (21)De Angelis, F.; Fantacci, S.; Selloni, A.; Nazeeruddin, M. K.;Gratzel, M. First-Principles Modeling of the Adsorption Geometry andElectronic Structure of Ru(II) Dyes on Extended TiO2 Substrates forDye-Sensitized Solar Cell Applications. J. Phys. Chem. C 2010, 114,6054.
    (22)Gundlach, L.; Letzig, T.; Willig, F. Test of Theoretical Models for Ultrafast Heterogeneous Electron Transfer with Femtosecond Two-Photon Photoemission Data. J. Chem. Sci. 2009, 121, 561.
    (23)J.J. Concepcion, J.W. Jurss, M.K. Brennaman, P.G. Hoertz, A.O.T. Patrocinio, N.Y. Murakami Iha, J.L. Templeton, T.J. Meyer, Acc. Chem. Res. 2009,42,1954.
    (24)S. Caramori, V. Cristino, R. Argazzi, L. Meda, C.A. Bignozzi, Inorg. Chem. 2010,49 ,3320
    (25)E. Bae, W. Choi, J. Phys. Chem. B 110 (2006) 14792.
    (26)I. Gillaizeau-Gauthier, F. Odobel, M. Alebbi, R. Argazzi, E. Costa, C.A. Bignozzi, P. Qu, G.J. Meyer, Inorg. Chem. 40 (2001) 6073.
    (27)Jose, R.; Thavasi, V.; Ramakrishna, S. Metal oxides for dye-sensitized solar cells. J. Am. Ceram. Soc. 2009, 92, 289–301.
    (28)Dare-Edwards, M. P.; Goodenough, J. B.; Hamnett, A.; Nicholson, N. D.Photoelectrochemistry of nickel(II) oxide. J. Chem. Soc., Faraday Trans. 2 1981, 77,643–661.
    (29)Adler, D.; Feinleib, J. Electrical and optical properties of narrow-band materials. Phys. Rev. B 1970, [3]2, 3112–3134.
    (30)Mori, S.; Fukuda, S.; Sumikura, S.; Takeda, Y.; Tamaki, Y.; Suzuki, E.; Abe, T.Charge-transfer processes in dye-sensitized NiO solar cells. J. Phys. Chem. C 2008, 112, 16134–16139.
    (31)Lin, L.; Elizabeth, A. G.; Peng, Q.; Gerrit, B.; Mikhail, G.; Anders, H.; Licheng, S. Double-layered NiO photocathodes for p-type DSSCs with record IPCE. Adv. Mater. 2010, 22, 1759–1762.
    (32)Mingzhe Yu;Gayatri Natu;Zhiqiang Ji;Yiying Wu The jounal of physical chemistry letters.2012,3,1074-1078
    (33)H. Kawazoe, H. Yanagi, K. Ueda, Hosono, NRS Bulletin,2000,28-36
    (34)Velevska, J.; Ristova, M. Electrochromic properties of NiOx prepared by low vacuum evaporation. Sol. Energy Mater. Sol. Cells 2002, 73, 131–139.
    (35)Vera, F.; Schrebler, R.; Munoz, E.; Suarez, C.; Cury, P.; Gomez, H.; Cordova, R.; Marotti, R. E.; Dalchiele, E. A. Preparation and characterization of eosin B- anderythrosin J-sensitized nanostructured NiO thin film photocathodes. Thin Solid Films 2005, 490, 182–188.
    (36)Mizoguchi, Y.; Fujihara, S. Fabrication and dye-sensitized solar cell performance of nanostructured NiO/coumarin 343 photocathodes. Electrochem. Solid-State Lett. 2008, 11, K78–K80.
    (37)Lepleux, L.; Chavillon, B.; Pellegrin, Y.; Blart, E.; Cario, L.; Jobic, S.; Odobel, F. Simple and reproducible procedure to prepare self-nanostructured NiO films for the fabrication of p-type dye-sensitized solar cells. Inorg. Chem. 2009, 48, 8245–8250.
    (38)Kuang, D.-B.; Lei, B.-X.; Pan, Y.-P.; Yu, X.-Y.; Su, C.-Y. Fabrication of novelhierarchical _-Ni(OH)2and NiO microspheres via an easy hydrothermal process. J. Phys. Chem. C 2009, 113, 5508–5513.
    (39)Xi, Y. Y.; Li, D.; Djurisic, A. B.; Xie, M. H.; Man, K. Y. K.; Chan, W. K. Hydrothermal synthesis vs electrodeposition for high specific capacitance nanostructured NiO films. Electrochem. Solid-State Lett. 2008, 11, D56–D59.
    (40)Urbano, A.; Ferreira, F. F.; deCastro, S. C.; Landers, R.; Fantini, M. C. A.; Gorenstein, A. Electrochromism in lithiated nickel oxide films deposited by rfsputtering. Electrochim. Acta 2001, 46, 2269–2273.
    (41)Park, J.-Y.; Ahn, K.-S.; Nah, Y.-C.; Shim, H.-S.; Sung, Y.-E. Electrochemical andelectrochromic properties of Ni oxide thin films prepared by a sol-gel method. J. Sol-Gel Sci. Technol. 2004, 31, 323–328.
    (42)Sumikura, S.; Mori, S.; Shimizu, S.; Usami, H.; Suzuki, E. Syntheses of NiOnanoporous films using nonionic triblock co-polymer templates and their application to photo-cathodes of p-type dye-sensitized solar cells. J. Photochem. Photobiol., A 2008, 199, 1–7.
    (43)Nattestad, A.; Ferguson, M.; Kerr, R.; Cheng, Y.-B.; Bach, U. Dye-sensitizednickel(II)oxide photocathodes for tandem solar cell applications. Nanotechnology 2008, 19, 295304.
    (44)S. Sasaki, K. Fujino, and Y. Takeuchi, Proceedings of the Japan Academy. Ser. B: Physical and Biological Sciences 1979 55, 43 .
    (45)Cramer, C. J. Essentials of Computational ChemistryWest Sussex, England ; New York, 2002.
    (46)Levine, I. N. Quantum Chemistry; 3th ed. Brooklyn, New York, 1970.
    (47)Lewars, E. G. Computational Chemistry Introduction to the Theory and Applications; 2thed. Peterborough Ontario Canada, 2011.
    (48)Lewars, E. G. Computational Chemistry Introduction to the Theory and Applications; 2thed. Peterborough Ontario Canada, 2011.
    (49)Lewars, E. Computational Chemistry:Introduction to the Theory and Applications of Molecular and Quantum MechanicsBoston, 2004.
    (50)Young, D. Computational Chemistry:A Practical Guide for Applying Techniquesto Real World Problems; 2thed. New York, 2001.
    (51)Moller, C.; Plesset, M. S. Phys. Rev.1934, 46, 618.
    (52) Binkley, J. S.; Pople, J. A. Int. J. Quant. Chem.1975, 9, 229.
    (53)Shavitt, I. Mol. Phys.1998,94,3.
    (54)Crawford, T. D.; III, H. F. S. Rev. Comput. Chem2000, 14, 33.
    (55)Pariser, R.; Parr, R. G. J. Chem. Phys.1953, 21, 466.
    (56)Pariser, R.; Parr, R. G. J. Chem. Phys.1953, 21, 767.
    (57)Pople, J. A. Trans Faraday Soc1953, 49, 1375.
    (58)J. A. Pople , G.A. S. J. Chem. Phys.1966, 44, 3289.
    (59) Baird, N. C.; Dewar, M. J. S. J. Chem. Phys.1969, 50, 1262.
    (60)Bingham, R. C.; Dewar, M. J. S.; LO, D. H. J. Am. Chem. Soc.1975, 97, 1285.
    (61)Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc.1977, 99, 4899.
    (62)Dewar, M. J. S.; Thiel, W. J. Am. Chem. Soc.1977, 99, 4907.
    (63)Dewar, M. J. S.; McKee, M. L. J. Am. Chem. Soc.1977, 99, 5231.
    (64)J. A. Pople , D. L. B., P. A. Dobosh J. Chem. Phys.1967, 47, 2026.
    (65)Dixon, R. N. Mol. Phys.1967, 12, 83.
    (66)Kotzian, M.; Rosch, N.; Zerner, M. C. Theor. Chim. Acta.1992, 81, 201.
    (67)Dewar, M. J. S.; Klopman, G. J. Am. Chem. Soc.1967, 89, 3089.
    (68)Dannenberg, J. J.; Evleth, E. M. Int. J. Quant. Chem.1992, 44, 869.
    (69)Stewart, J. J. P. J. Comp. Chem.1989, 10, 209.
    (70)Stewart, J. J. P. J. Comp. Chem.1991, 12, 320.
    (71)Stewart, J. J. P. J. Comp. Chem.1992, 10, 221.
    (72)Holder, A. J.; II, R. D. D.; Jie, C. Tetrahedron1994, 50, 627.
    (73)Dewar, M. J. S.; Jie, C.; Yu, J. Tetrahedron 1993, 49, 5003.
    (74)P. Hohenberg and W. Kohn, Phys. Rev. B.1964,136, 864
    (75)Kohn, W.; Sham, L. J. Phys. Rev.1965, 140, A1133.
    (76)Sousa, S. F.; Fernandes, P. A.; Ramos, M. J. J. Phys. Chem. A2007, 111, 10439.
    (77)Gill, P. M. W. Adv Quantum Chem1994, 25, 141.
    (78)Boys, S. F. Proc. R. Soc. London. Ser. A1950, 200, 542.
    (79) Gill, P. M. W.; Pople, J. A. Int. J. Quant. Chem.1991, 40, 753.
    (80)Dunning, T. H. J. Chem. Phys.1989, 90, 1007.
    (81)Woon, D. E.; Dunning, T. H. J. Chem. Phys.1993, 98, 1358.
    (82) Woon, D. E.; Dunning, T. H. J. Chem. Phys.1995, 103, 4572.
    (83)Hay, P. J.; Wadt, W. R. J. Chem. Phys.1985, 82, 270.
    (84)Wadt, W. R.; Hay, P. J. J. Chem. Phys.1985, 82, 284.
    (85)Hay, P. J.; Wadt, W. R. J. Chem. Phys.1985, 82, 299.
    (86)Roy, L. E.; Hay, P. J.; Martin, R. L. J. Chem. Theory Comput.2008, 4, 1029.
    (87)Foresman, J. B. Exploring Chemistry with Electronic Structure Methods; 2thed. Pittsburgh, 2000.
    (88)Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, N. J.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.;Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian 09, Revision A.1; Gaussian, Inc: Wallingford, CT, 2009.
    (89)M. Schulze,R Reissner,M. Lorenz,U. Radke,W. Schnurnberger. Electrochimica Acta,1999,44,3969-3976
    (90) Hawecker, J.; Lehn, J. M.; Ziessel., R. Journal of the Chemical Society Chemical Communications. 1984, (6), 328.
    (91) Hori , H.; Johnson , F. P. A.; Koike , K.; Ishitani , O.; Ibusuki , T. J. Photochem. Photobiol. A Chem. 1996, 96, 171
    (92)Koike , K.; Hori , H.; Ishizuka , M.; Westwell , J. R.; Takeuchi , K.; Ibusuki , T.; Enjouji , K.; Konno , H.; Sakamoto , K.; Ishitani , O. Organometallics. 1997, 16, 5724
    (93)Fujita, E.; Brunschwig, B. S. Homogeneous redox catalysis in CO2 fixation, Catalysis, Heterogeneous Systems, Gas Phase Systems, Electron Transfer in Chemistry,Edited by Vincenzo Balzani, 2001; Vol. 4.
    (94)Ishida, H.; Tanaka, K.; Tanaka, T. Organometallics. 1987, 6, 181.
    (95)Nagao, H.; Mizukawa, T.; Tanaka, K. Inorganic Chemistry . 1994, 33 (15), 3415.

    下載圖示
    QR CODE