簡易檢索 / 詳目顯示

研究生: 鍾儀靜
Chung, Yi-Ching
論文名稱: 氣候變遷對北大西洋海洋洄游魚種的潛在影響研究:以大西洋鱈魚、大西洋比目魚、大西洋鮭魚與大西洋藍鰭鮪魚為例
Study on The Potential Impact of Climate Change on The North Atlantic Migratory Fish, Taking The Example of Atlantic Cod, Atlantic Halibut, Atlantic Salmon and Atlantic Bluefin Tuna
指導教授: 張育綾
Chang, Yu-Lin
學位類別: 碩士
Master
系所名稱: 地球科學系
Department of Earth Sciences
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 88
中文關鍵詞: 氣候變遷北大西洋洄游魚種捕獲量
英文關鍵詞: Climate Change, North Atlantic Ocean, Migratory Fish, Capture Production
DOI URL: https://doi.org/10.6345/NTNU202202361
論文種類: 學術論文
相關次數: 點閱:156下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著全球氣候變遷的影響,海洋環境亦受到相當程度的改變,北大西洋海域中環境因子長期的變化趨勢包含:海洋溫度、鹽度逐漸上升、海表面葉綠素甲濃度逐漸下降。面對生活環境的轉變,可能會造成生活於其中之生物改變生活型態,甚至會導致其數量之增減。本研究使用聯合國糧食與農業組織的全球捕獲量資料與全球簡易海洋資料同化分析系統的再分析資料,透過經驗正交函數分析法,分析1991年至2010年間海洋洄游魚種大西洋鱈魚、大西洋比目魚、大西洋鮭魚以及大西洋藍鰭鮪魚主要分布區域內環境因子的變異程度,並與目標魚種的捕獲量進行相關性比對。研究結果顯示在過去二十年間,海洋溫度的變化趨勢與大西洋鱈魚和大西洋鮭魚的捕獲量之間呈現顯著的高度負相關,大西洋鱈魚和大西洋藍鰭鮪魚的捕獲量與海洋鹽度的變化趨勢亦呈現顯著的高度負相關,海表面葉綠素甲濃度改變也可能影響大西洋比目魚、大西洋鮭魚和大西洋藍鰭鮪魚的捕獲量。此外環境鹽度的變化可能使得大西洋鱈魚改變原先習慣的生存深度轉往更深的水層生活,大西洋鮭魚也可能受到環境溫度的改變而將生活深度向下延展。由此可見,氣候變遷引發海洋環境發生變化並對於各個目標魚種有著不同程度的影響性。

    The ocean environment has changed in recent decades under the impacts of climate change. In the North Atlantic Ocean, the long-term trend of ocean temperature and salinity is increasing, whereas trend of chlorophyll-a concentration is decreasing. Owing to the changes in the living environment, we wonder how the environmental changes influence the marine organisms and how marine organisms adapt to the changes of environment. In this study, we use the global capture production data from FAO and the assimilation data from SODA POP to investigate the potential connections between the ocean environmental changes and the selected Atlantic fishes: Atlantic Cod, Atlantic Halibut, Atlantic Salmon, and Atlantic Bluefin Tuna during the period 1991-2010 based on the empirical orthogonal function analysis. Our results indicate a significant negative correlation between the ocean temperature and the capture productions of Atlantic Cod and Atlantic Salmon over the past two decades. The relationship between the capture productions of Atlantic Cod and Atlantic Bluefin Tuna and the ocean salinity shows significant negative correlation. Change of chlorophyll-a concentration may also affect the capture productions of Atlantic Halibut, Atlantic Salmon and Atlantic Bluefin Tuna. In addition, the variation of ocean salinity and temperature may cause Atlantic Cod and Atlantic Salmon shift their living depths to a deeper level, respectively.

    目錄 Abstract I 摘要 II 目錄 III 圖表目錄 V 第一章 緒論 1 1.1 研究背景 1 1.2 研究目標魚種 7 1.2.1 大西洋鱈魚 7 1.2.2 大西洋比目魚 7 1.2.3 大西洋鮭魚 7 1.2.4 大西洋藍鰭鮪魚 8 1.3 研究動機 10 第二章 研究資料與研究方法 11 2.1 研究資料 11 2.1.1 FAO Fisheries & Aquaculture - Statistics 11 2.1.2 SODA POP(version 2.2.4) 12 2.1.3 SeaWiFS(version 5.2) 13 2.2 研究方法 14 第三章 研究結果 19 3.1 海洋環境變化 19 3.2 研究範圍內各魚種生活區域之水層平均 25 3.2.1 大西洋鱈魚 25 3.2.2 大西洋比目魚 33 3.2.3 大西洋鮭魚 41 3.2.4 大西洋藍鰭鮪魚 49 3.2.5 相關性分析 57 3.3 研究範圍內各魚種生活區域之不同水深 59 3.3.1 大西洋鱈魚 60 3.3.2 大西洋比目魚 66 3.3.3 大西洋鮭魚 70 3.3.4 大西洋藍鰭鮪魚 76 第四章 討論與未來工作 82 4.1 結論與討論 82 4.1.1 海洋溫度與捕獲量的關係 82 4.1.2 海洋鹽度與捕獲量的關係 83 4.1.3 海表面葉綠素甲濃度與捕獲量的關係 83 4.1.4 海洋流場與捕獲量的關係 84 4.1.5 研究資料與研究方法的限制 84 4.2 未來工作 86 參考文獻 87

    Björnsson, H., & Venegas, S. A. (1997). A manual for EOF and SVD analyses of climatic data. CCGCR Report, 97(1), 112-134.
    Boyer, T., Levitus, S., Antonov, J., Locarnini, R., Mishonov, A., Garcia, H., & Josey, S. A. (2007). Changes in freshwater content in the North Atlantic Ocean 1955–2006. Geophysical Research Letters, 34(16).
    Cannaby, H., & Hüsrevoğlu, Y. S. (2009). The influence of low-frequency variability and long-term trends in North Atlantic sea surface temperature on Irish waters. ICES Journal of Marine Science: Journal du Conseil, 66(7), 1480-1489.
    Carton, J. A., Giese, B. S., & Grodsky, S. A. (2005). Sea level rise and the warming of the oceans in the Simple Ocean Data Assimilation (SODA) ocean reanalysis. Journal of Geophysical Research: Oceans, 110(C9).
    Carton, J. A., & Giese, B. S. (2008). A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Monthly Weather Review, 136(8), 2999-3017.
    Cunningham, S. A., Kanzow, T., Rayner, D., Baringer, M. O., Johns, W. E., Marotzke, J., ... & Meinen, C. S. (2007). Temporal variability of the Atlantic meridional overturning circulation at 26.5 N. science, 317(5840), 935-938.
    Durack, P. J., & Wijffels, S. E. (2010). Fifty-year trends in global ocean salinities and their relationship to broad-scale warming. Journal of Climate, 23(16), 4342-4362.
    Giese, B. S., & Ray, S. (2011). El Niño variability in simple ocean data assimilation (SODA), 1871–2008. Journal of Geophysical Research: Oceans, 116(C2).
    Gleckler, P. J., Santer, B. D., Domingues, C. M., Pierce, D. W., Barnett, T. P., Church, J. A., ... & Caldwell, P. M. (2012). Human-induced global ocean warming on multidecadal timescales. Nature Climate Change, 2(7), 524-529.
    Irwin, A. J., & Oliver, M. J. (2009). Are ocean deserts getting larger?. Geophysical Research Letters, 36(18).
    Johns, W. E., Baringer, M. O., Beal, L. M., Cunningham, S. A., Kanzow, T., Bryden, H. L., ... & Curry, R. (2011). Continuous, array-based estimates of Atlantic Ocean heat transport at 26.5 N. Journal of Climate, 24(10), 2429-2449.
    Kanzow, T., Cunningham, S. A., Rayner, D., Hirschi, J. J. M., Johns, W. E., Baringer, M. O., ... & Marotzke, J. (2007). Observed flow compensation associated with the MOC at 26.5 N in the Atlantic. science, 317(5840), 938-941.
    Levitus, S., Antonov, J. I., Boyer, T. P., Locarnini, R. A., Garcia, H. E., & Mishonov, A. V. (2009). Global ocean heat content 1955–2008 in light of recently revealed instrumentation problems. Geophysical Research Letters, 36(7).
    Nye, J. A., Link, J. S., Hare, J. A., & Overholtz, W. J. (2009). Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Marine Ecology Progress Series, 393, 111-129.
    Palmer, M. D., Haines, K., Tett, S. F. B., & Ansell, T. J. (2007). Isolating the signal of ocean global warming. Geophysical Research Letters, 34(23).
    Perry, A. L., Low, P. J., Ellis, J. R., & Reynolds, J. D. (2005). Climate change and distribution shifts in marine fishes. science, 308(5730), 1912-1915.
    Planque, B., & Frédou, T. (1999). Temperature and the recruitment of Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences, 56(11), 2069-2077.
    Polovina, J. J., Howell, E. A., & Abecassis, M. (2008). Ocean's least productive waters are expanding. Geophysical Research Letters, 35(3).
    Rhein, M. A., Rintoul, S. R., Aoki, S., Campos, E., Chambers, D., Feely, R. A., ... & Mauritzen, C. (2013). Observations: ocean. Climate change, 255-315.
    Rijnsdorp, A. D., Peck, M. A., Engelhard, G. H., Möllmann, C., & Pinnegar, J. K. (2009). Resolving the effect of climate change on fish populations. ICES Journal of Marine Science: Journal du Conseil, fsp056.
    Scarnecchia, D. L., Gordon, B. D., Schooley, J. D., Ryckman, L. F., Schmitz, B. J., Miller, S. E., & Lim, Y. (2011). Southern and northern Great Plains (United States) paddlefish stocks within frameworks of Acipenseriform life history and the metabolic theory of ecology. Reviews in Fisheries Science, 19(3), 279-298.
    Storch, H. V., & Navarra, A. (1995). Analysis of climate variability: applications of statistical techniques. Springer-Verlag Berlin, 205-220.
    Venegas, S. A., Mysak, L. A., & Straub, D. N. (1996). Evidence for interannual and interdecadal climate variability in the South Atlantic. Geophysical Research Letters, 23(19), 2673-2676.
    Wang, C., Dong, S., & Munoz, E. (2010). Seawater density variations in the North Atlantic and the Atlantic meridional overturning circulation. Climate dynamics, 34(7-8), 953-968.
    Weare, B. C., & Nasstrom, J. S. (1982). Examples of extended empirical orthogonal function analyses. Monthly Weather Review, 110(6), 481-485.

    下載圖示
    QR CODE