簡易檢索 / 詳目顯示

研究生: 李國輔
Lee, Kuo-Fu
論文名稱: 基於粒子群聚演算法的多行人追蹤
Multi-Human Tracking Based on Particle Swarm Optimization with Color Histogram
指導教授: 李忠謀
Lee, Chung-Mou
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 63
中文關鍵詞: 行人偵測行人追蹤
英文關鍵詞: Histogram of Oriented Gradient, PSO
DOI URL: https://doi.org/10.6345/NTNU202205046
論文種類: 學術論文
相關次數: 點閱:72下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 行人的偵測與追蹤是近年來相當重要的研究項目。一般常見的行人追蹤演算法大多是利用大量的運算時間來取得高準確率,或者是犧牲準確率而得到快速追蹤的結果。直至目前為止,尚未有快速且準確的演算法來偵測追蹤移動中的行人。因此,本論文採用運算速度更為快速的粒子群聚(Particle Swarm Optimization, PSO)演算法搭配色彩直方圖 (Color Histogram) 做為擷取影像特徵方法,以達到速度與準確率的最佳平衡。本研究的方法共分成四個階段:首先利用Histogram of Oriented Gradient (HOG) 針對輸入影像進行「行人偵測」找出行人位置,其次對該影像進行「影像前處理」來降低光影的影響,接著計算影像的色彩直方圖進行特徵距離相似度計算,最後套用至PSO演算法的適應函數進行行人追蹤。本研究的實驗從七大影像資料庫中選取不同的移動方式的影像 (如左右橫向移動、畫面上隨機移動及深度的移動等) 來驗證PSO演算法的速度與準確率。結果顯示,在花費較少時間計算的情況之下 (0.0784 ~ 0.0906 s) ,PSO演算法可達到與其他演算法一樣甚至較高的準確率 (Multiple Object Tracking Accuracy,MOTA:69.88 ~ 86.54%;Multiple Object Tracking Precision,MOTP:77.43 ~ 84.76%) 。若影像資料沒有受到部分或全部遮蔽的干擾,PSO演算法的追蹤準確率可維持在80% 以上。研究結果證實與現有的演算法相比,PSO演算法不僅大幅縮短了演算時間,更展現優異的追蹤準確率,顯示此演算法可達到速度與準確率的最佳平衡。未來研究將繼續改良現有的PSO演算法,以提升分析部分或全部遮蔽影像的準確率。

    Human detection and tracking has been an important research topic in recent years. Most commonly used methods of human tracking either require a large amount of computing time to reach high accuracy, or sacrifice the accuracy to obtain rapid tracking results. To date, there is no algorithm which can fast and accurately detect and track pedestrians. In light of this, the current study employed the Particle Swarm Optimization (PSO) algorithm with Color Histogram methods, aimed to develop an optimized algorithm for human detection and tracking. The proposed algorithm include four steps: 1) Histogram of Oriented Gradient (HOG) was used to detect the locations of pedestrians; 2) Image Pre-processing was used to remove the influence of light and shadow; 3) Color Histogram of the image was computed to calculate the similarity of feature points; and 4) Fitness Function of PSO algorithm was computed to proceed Human tracking. To examine the speed and accuracy of the proposed algorithm, images with pedestrians in different moving ways (Lateral movement, randomize movement and depth movement) were collected from seven image databases. The findings suggest that compare to other algorithms, the PSO algorithm can reach similar or better accuracy (Multiple Object Tracking Accuracy, MOTA:69.88 ~ 86.54%;Multiple Object Tracking Precision, MOTP:77.43 ~ 84.76%) in shorter computing time (0.0784 ~ 0.0906s). Even if the image data were interfered by partial or entire occlusion, the tracking accuracy of the PSO algorithm can still reach 80% or above. The findings reveal that compared with other existed algorithms, the PSO algorithm not only significantly reduces the computing time, but also can reach excellent tracking accuracy. Future studies are warranted to improve the PSO algorithm tacking accuracy when process image data with partial and entire occlusion.

    摘要 I Abstract III 誌謝 V 第一章 緒論 10 1.1 研究動機 10 1.2 研究目的 11 1.3 研究範圍及限制 11 1.4 論文架構 12 第二章 文獻探討 13 2.1 行人偵測 (Human Detection) 13 (1) 以運動為主之行人偵測: 13 (2) 以外觀為主之行人偵測: 14 2.2 行人追蹤(Human Tracking) 16 2.3 粒子群聚演算法 19 第三章 研究方法 21 3.1 研究架構與流程 21 (1) 偵測部分: 21 (2) 追蹤部分 22 3.2 影像前處理 24 (1) 行人偵測部分 24 (2) 行人追蹤部分 25 3.3 行人偵測(Human Detection) 27 (1) 單位層級: 28 (2) Gradients 29 (3) Normalization and Descriptor Blocks 31 (4) Support Vector Machine (SVM) 32 3.4 行人追蹤(Human Tracking) 34 (1) PSO流程 34 (2) 影像特徵 36 (3) 適應函數計算 38 (4) Adjusted PSO(A-PSO) 40 第四章 實驗結果與分析 42 4.1 實驗準備 43 (1) 實驗資料庫 43 (2) 準確率的計算 47 4.2 適應函數比較 48 4.3 實驗結果 50 第五章 結論 57 5.1 結論 57 5.2 未來展望 58 參考文獻 59

    K. Lee, C. Y. Choo, H. Q. See, Z. J. Tan, and Y. Lee, “Human detection using Histogram of Oriented Gradients and human body ratio estimation,” Proceedings - 2010 3rd IEEE International Conference on Computer Science and Information Technology, ICCSIT 2010, vol. 4, no. Figure 1, pp. 18–22, 2010.
    [2] A. Yilmaz, O. Javed, and M. Shah, “Object Tracking - A Survey,” ACM Computing Surveys, vol. 18, no. 4, 1999.
    [3] S.-T. An, J.-J. Kim, and J.-J. Lee, “Simultaneous Detection and Tracking of Humans using Particle Swarm Optimization,” 2011 IEEE International Conference on Mechatronics and Automation, pp. 483–488, 2011.
    [4] S.-S. Huang, H.-M. Tsai, P.-Y. Hsiao, M.-Q. Tu, and E.-L. Jian, “Combining Histograms of Oriented Gradients with Global Feature for Human Detection,” Advances in Multimedia Modeling, vol. 6524, pp. 208–218, 2011.
    [5] P. Viola, M. J. Jones, and D. Snow, “Detecting Pedestrians Using Patterns of Motion and Appearance,” International Journal of Computer Vision, vol. 63, no. 2, pp. 153–161, 2005.
    [6] P. Viola and M. Jones, “Rapid Object Detection using a Boosted Cascade of Simple Featrues,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), vol. 1, no. C, pp. 511–518, 2001.
    [7] J. Han and B. Bhanu, “Individual Recognition Using Gait Energy Image,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, no. 2, pp. 316–322, 2006.
    [8] Y. Ran, Q. Zheng, I. Weiss, L. S. Davis, W. Abd-Almageed, and L. Zhao, “Pedestrian Classification From Moving Platforms Using Cyclic Motion Pattern,” Proceedings - International Conference on Image Processing, ICIP, vol. 2, pp. 854–857, 2005.
    [9] S. A. Niyogi and E. H. Adelson, “Analyzing and Recognizing Walking Figures in XYT,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR., no. 1, pp. 469–474, 1994.
    [10] A. Broggi, M. Bertozzi, A. Fascioli, and M. Sechi, “Shape-based pedestrian detection,” Proceedings of the IEEE Intelligent Vehicles Symposium 2000, pp. 215–220, 2000.
    [11] T. Zhao, R. Nevatia, and B. Wu, “Segmentation and Tracking of Multiple Human in Crowded Environments,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 7, pp. 1198–1211, 2008.
    [12] D. M. Gavrila and S. Munder, “Multi-cue Pedestrian Detection and Tracking from a Moving Vehicle,” International Journal of Computer Vision, vol. 73, no. 1, pp. 41–59, 2007.
    [13] C. Hu, X. Ma, and X. Dai, “A Robust Person Tracking and Following Approach for Mobile Robot,” Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation, ICMA 2007, pp. 3571–3576, 2007.
    [14] D. Gerónimo, A. D. Sappa, A. López, and D. Ponsa, “Pedestrian Detection Using Adaboost Learning of Features and Vehicle Pitch Estimation,” Proceedings of the Sixth IASTED International Conference on Visualization, Imaging, and Image Processing, pp. 400–405, 2006.
    [15] F. Suard, A. Rakotomamonjy, A. Bensrhair, and A. Broggi, “Pedestrian Detection using Infrared images and Histograms of Oriented Gradients,” IEEE Intelligent Vehicles Symposium (IV), pp. 206–212, 2006.
    [16] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for Human Detection,” Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. I, pp. 886–893, 2005.
    [17] S. T. Birchfield and S. Rangarajan, “Spatial Histograms for Region-Based Tracking,” ETRI Journal, vol. 29, no. 5, pp. 697–699, 2007.
    [18] D. Roller, K. Daniilidis, and H. H. Nagel, “Model-Based Object Tracking in Monocular Image Sequences of Road Traffic Scenes,” International Journal of Computer Vision, vol. 10, no. 3, pp. 257–281, 1993.
    [19] Q. Delamarre and O. Faugeras, “3D Articulated Models and Multi-View Tracking with Silhouettes,” Proceedings of the Seventh IEEE International Conference on Computer Vision, vol. 2, pp. 716–721, 1999.
    [20] I. A. Karaulova, P. M. Hall, and A. D. Marshall, “A Hierarchical Model of Dynamics for Tracking People with a Single Video Camera,” Proceedings of the British Machine Vision Conference, pp. 352––361, 2000.
    [21] D. Comaniciu, V. Ramesh, and P. Meer, “Kernel-Based Object Tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 25, no. 5, pp. 564–577, 2003.
    [22] P. Kaewtrakulpong and R. Bowden, “Adaptive Visual System for Tracking Low Resolution Colour Targets,” Procedings of the British Machine Vision Conference 2001, vol. 1, pp. 26.1–26.10, 2001.
    [23] J. Sturges and T. W. A. Whitfield, “Locating Basic Colours in the Munsell-Space,” Color Research & Application, vol. 20, no. 6, pp. 364–376, 1995.
    [24] R. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Journal of Basic Engineering, vol. 82, no. 1, pp. 35–45, 1960.
    [25] M. S. Arulampalam, S. Maskell, N. Gordon, and T. Clapp, “A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking,” IEEE Transactions on Signal Processing, vol. 50, no. 2, pp. 174–188, 2002.
    [26] P. F. Gabriel, J. G. Verly, J. H. Piater, and A. Genon, “The State of the Art in Multiple Object Tracking Under Occlusion in Video Sequences,” Advanced Concepts for Intelligent Vision Systems, pp. 166–173, 2003.
    [27] K. Nummiaro, E. Koller-Meier, and L. Van Gool, “An Adaptive Color-Based Particle Filter,” Image and Vision Computing, vol. 21, pp. 99–110, 2003.
    [28] J. Z. Li, M. T. Ozsu, and D. Szafron, “Modeling of Moving Objects in a Video Database,” Network of Centres of Excellence (NCE), pp. 336–343, 1997.
    [29] K. Beard and H. M. Palancioglu, “Estimating Positions and Paths of Moving Objects,” Proceedings of the International Workshop on Temporal Representation and Reasoning, vol. 2000-Janua, pp. 155–162, 2000.
    [30] M. Han, W. Xu, H. Tao, and Y. Gong, “An Algorithm for Multiple Object Trajectory Tracking,” IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR., vol. 1, pp. 864–871, 2004.
    [31] Y. Satoh, T. Okatani, and K. Deguchi, “A Color-based Tracking by Kalman Particle Filter,” Proceedings of the 17th International Conference on Pattern Recognition, vol. 3, pp. 502–505 Vol.3, 2004.
    [32] J. Kennedy and R. Eberhart, “Particle Swarm Optimization,” Proceedings of ICNN’95 - International Conference on Neural Networks, vol. 4, p. 16, 2013.
    [33] R. Eberhart and J. Kennedy, “A New Optimizer using Particle Swarm Theory,” MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science, pp. 39–43, 1995.
    [34] X. Z. X. Zhang, W. H. W. Hu, S. Maybank, X. L. X. Li, and M. Z. M. Zhu, “Sequential Particle Swarm Optimization for Visual Tracking,” 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8, 2008.
    [35] T. Kobayashi and K. Nakagawa, “Real Time Object Tracking on Video Image Sequence Using Particle Swarm Optimization,” International Conference on Control, Automation and Systems, pp. 1773–1778, 2007.
    [36] M. Thida, H. L. Eng, D. N. Monekosso, and P. Remagnino, “A Particle Swarm Optimisation Algorithm with Interactive Swarms for Tracking Multiple Targets,” Applied Soft Computing Journal, vol. 13, no. 6, pp. 3106–3117, 2013.
    [37] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” International Journal of Computer Vision, vol. 60, no. 2, pp. 91–110, 2004.
    [38] R. Kasturi, D. Goldgof, P. Soundararajan, V. Manohar, J. Garofolo, R. Bowers, M. Boonstra, V. Korzhova, and J. Zhang, “Framework for performance evaluation of face, text, and vehicle detection and tracking in video: Data, metrics, and protocol,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 31, no. 2, pp. 319–336, 2009.
    [39] “CLEAR evaluation,” 2007. [Online]. Available: http://clear-evaluation.org/.
    [40] Y. Li, C. Huang, and R. Nevatia, “Learning to Associate:Multi-Target Tracker for Crowded Scene,” 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 2953–2960, 2009.
    [41] M. D. Breitenstein, F. Reichlin, B. Leibe, E. Koller-Meier, and L. Van Gool, “Online Multiperson Tracking-by-Detection from a Single, Uncalibrated Camera,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 33, no. 9, pp. 1820–1833, 2011.
    [42] J. Berclaz, F. Fleuret, and P. Fua, “Multiple Object Tracking using Flow Linear Programming,” IEEE International Workshop on Performance Evaluation of Tracking and Surveillance (PETS-Winter), pp. 1–8, 2009.
    [43] J. Berclaz, F. Fleuret, and P. Fua, “Robust People Tracking with Global Trajectory Optimization,” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 744–750, 2006.
    [44] J. Yang, P. A. Vela, Z. Shi, and J. Teizer, “Probabilistic Multiple People Tracking through Complex Situations,” Proceedings of the 11th IEEE International Workshop on Performance Evaluation of Tracking and Surveillance, pp. 79–86, 2009.
    [45] D. Conte, P. Foggia, G. Percannella, and M. Vento, “Performance Evaluation of a People Tracking System on PETS2009 Database,” Proceedings - IEEE International Conference on Advanced Video and Signal Based Surveillance, AVSS 2010, pp. 119–126, 2010.
    [46] T. Yang and M. Q. Meng, “Condensation-based Multi-person Tracking using an Online SVM Approach,” Proceeding of the IEEE International Conference on Robotics and Biomimetics (ROBIO), pp. 1983–1988, 2013.
    [47] D. Riahi and G.-A. Bilodeau, “Multiple Object Tracking Based on Sparse Generative Appearance Modeling,” International Conference on Image Processing, ICIP, vol. 1, pp. 4017 – 4021, 2015.

    下載圖示
    QR CODE