簡易檢索 / 詳目顯示

研究生: 陳琪瑤
Chi-Yao Chen
論文名稱: 以測驗表現和眼動型態探討圖示調整在不同幾何命題判讀作業之影響
Exploring the effects of adjusted figures on validation of different geometric propositions through test performance and eye tracking
指導教授: 吳昭容
Wu, Chao-Jung
學位類別: 博士
Doctor
系所名稱: 教育心理與輔導學系
Department of Educational Psychology and Counseling
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 153
中文關鍵詞: 眼動型態幾何文本幾何證明幾何命題判讀圖文閱讀閱讀理解認知模式
英文關鍵詞: eye movements, geometric text, geometric proof, validation of geometric propositions, reading of text and diagram, reading comprehension, cognitive model
論文種類: 學術論文
相關次數: 點閱:330下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

圖示在幾何文本閱讀歷程扮演著重要角色。本研究以中學生和大學生為對象,透過圖示調整對轉譯、簡單和多步驟推論三類型命題判讀之正確率、反應時間、眼動型態的影響,探究圖示在幾何文本閱讀歷程各階段扮演的角色。材料採20道國中幾何文本,共計110個命題。三個實驗分別針對397位九年級生進行紙本施測、46位中等程度國、高中生進行電腦化測驗,以及41位大學生進行眼動實驗。結果發現:(1)整體而言,三類命題正確率由高至低,反應時間、總凝視時間和單位畫素時間由短至長依序是簡單、轉譯和多步驟類,顯示了這三類命題的判讀歷程如預期的由簡至繁。(2)圖示調整最能提升轉譯類命題表現,其次是簡單類,但對多步驟類的影響僅在效率與眼動型態上,顯示圖示調整最能有助知覺辨識,而提升轉譯類命題判讀;也能觸發相關幾何定理,提升簡單類命題判讀;但對於涉及複雜邏輯論證的多步驟類,圖示調整效果僅在反應時間的縮短,與眼動指標所反應的判讀歷程改變上。(3)受試者在轉譯類命題判讀歷程中,對題幹訊息的仰賴多於簡單和多步驟類;相對的在多步驟類命題判讀歷程中,對圖示訊息的仰賴多於簡單和轉譯類。顯示轉譯類命題的判讀因與圖文訊息直接相關,對題幹訊息的仰賴較另兩類命題多;相對的,多步驟類的推理論證是藉著圖示具體空間結構來完成,因此對圖示訊息仰賴重。(4)圖示調整顯著減少已知條件閱讀階段的命題初始理解時間,但對後續回視時間影響不顯著。顯示圖示調整主要影響空間表徵的形成,較不影響推理歷程。(5)瞳孔大小可嘗試作為探究幾何文本閱讀歷程的指標之一。本研究同時依據研究結果提出「幾何命題判讀認知模式」,並對幾何教學和未來研究提出具體建議。

Figures play an important role in geometric text reading. This study investigated the different roles of figures in geometric text reading processes, through the effects of adjusted figures on the transforming proposition, one-step inferential proposition, and multi-step inferential proposition validated by accuracy, response time and eye movements. In this study, the validated result of high school and undergraduate students was analyzed using twenty junior high school level geometry texts containing 110 proposition validations. Three experiments were conducted. Experiment 1 was paper-pencil group tests of 397 ninth grade students for the measurements of their accuracy. Experiment 2 was the computer-based testing of 46 average level ninth and tenth grade students for the measurements of the accuracy and response time. Experiment 3 was eye tracking of 41 college students for the measurements of their accuracy, response time and eye movements. Results indicated that: (1) generally, the accuracy from high to low was transforming proposition, one-step inferential proposition, and multi-step inferential proposition. The response time, dwell time, and gaze duration per pixel from short to long were transforming proposition, one-step inferential proposition, and multi-step inferential proposition. This implied that the most complicated proposition validations were the multi-step ones and the least were transforming ones. (2) The effects of adjusted figures depended on different proposition validation. The greatest effect of adjusted figures on accuracy was on transforming proposition validation, followed by one-step one. The effect on multi-step proposition validation was only found to have increased the efficiency. This implied that adjusted figures contributed to the perceptual organization, which led to the increased efficacy in transforming proposition validation. In addition, the adjusted figures also activated relevantly geometric theorems in long term memory which increased efficacy in one-step proposition validation. Furthermore, for the complex proving processes of multi-step proposition validation, in contrast, the effects of adjusted figures were on the increased efficiency and eye movements. (3) The subjects relied more on given information in transforming proposition validation than in one-step and multi-step ones. By comparise, they relied on more figure information in multi-step proposition validation than in one-step and transforming ones. This implied that the integration of the text and figure during transforming proposition validation depended on text more than the inferential processes of one-step and multi-step ones did. In contrast, the complex inferential processes went through the concrete spatial construction of figures, which resulted in the greatest dependency on figures of the multi-step proposition validation. (4) Adjusted figures significantly decreased the initial reading comprehension time of the given reading, but did not affect the regression time. This implied that adjusted figures affected the forming of spatial representations, but did not affect the inferential time. (5) Pupillary dilations might be an indication of the change in geometric text reading. According to the results, the researcher proposed a “geometric proposition validation cognitive model.” Implications for future research and the teaching relevance to geometric text reading are discussed.

致謝詞………………………………………..…………..………………….…..…….……i 中文摘要……………………………………..…………..………………….……….……iii 英文摘要………………………………..………………..………………….…..……....…v 目錄…………………………………..………………….…………….............………….vii 表次………………………………..………………..……………………….…..………..ix 圖次…………………………………..……………..…………………………...………..xi 緒論…………………………..……….……………………..……………………….……1 一、研究動機………………………………………..…………...……….………....1 二、研究目的……………………………………….....……..…..……….…………4 三、研究問題……………………………………………….…….…………………5 文獻探討…...….…………………………..……………..……………..…….…..…….…7 一、閱讀相關理論與實徵研究…………………………...….…...……........……...7 二、數學閱讀相關理論與實徵研究………..…………………....………...…...…16 三、數學閱讀的眼動相關研究………………………………………….......….…25 四、研究理念與架構………………………………………..……………….….…31 實驗一:圖示調整對幾何命題判讀作業影響之效益研究…………………………....43 一、研究方法………………………………………………………….…..……….43 二、結果分析……………………………………………………………...…….…53 三、討論…………………………………………………………………...….....…56 實驗二:圖示調整對幾何命題判讀作業影響之效率研究……..………….……….…61 一、研究方法………………………………………………………….….………..61 二、結果分析…………………….……..……………………………….………....64 三、討論…………………..………………………………….………….………....67 實驗三:圖示調整對幾何命題判讀影響作業之歷程研究…………...…….…………69 一、研究方法…………………………………………………………...……….…69 二、結果分析………………………..……………………….…….……………....71 三、討論……………………………..………………………….….……………....90 綜合討論…….…..…………………………..……………………………...……...……..95 一、幾何命題判讀認知模式……………………………..…..……..….….….…….95 二、圖示調整能提升幾何命題判讀表現………………..………….……………..104 三、圖示調整在轉譯和簡單類命題判讀表現影響大.……………..………..……106 四、對幾何教學的啟示………………………..………….………………..………107 五、研究限制和對未來幾何文本閱讀研究的建議………………….……………109 參考文獻………………………………………….……………….....……………….…113 中文部分…………………………………………….…………....……..…………113 西文部分…………………………………………………….…..……………....…113 附錄……………………………..……………………..……………..…………….……125 附錄一 試題格式範例………………………..…..………………..….…………125 附錄二 有無調整版圖示對照………………………..…………....….…………127 附錄三 幾何背景知識作圖測驗與計分方式……………….....…..………...….137 附錄四 幾何背景知識測驗…………………………………..…..…............…...138

南一出版社(2009a)。國民中學數學教科書第四冊。臺南:南一。
南一出版社(2009b)。國民中學數學教科書第五冊。臺南:南一。
胡志偉、顏乃欣(1995)。中文字的心理歷程。載於曾進興(主編),語言病理學(29-76)。台北:心理。
高雄市教育局(2012年11月4日)。高雄市教育局全球資訊網【各項學校建設分析】。取自http://www.kh.edu.tw/releaseRedirect.do?unitID=183&pageID=3096
柯華葳、陳明蕾、廖家寧(2005)。詞頻、詞彙類型與眼球運動型態:來自篇章閱讀的證據。中華心理學刊,47(4),381-398。
教育部(2013年3月10日)。教育部電子報(第378期)【2008-2011教育部中小學資訊教育白皮書】。取自http://epaper.edu.tw/topical.aspx?topical_sn=375
陳琪瑤、吳昭容(2012)。幾何證明文本閱讀的眼動研究:圖文比重及圖示著色效果。教育實踐與研究,25(2),35-66。
康軒出版社(2009a)。國民中學數學教科書第四冊。臺南:康軒。
康軒出版社(2009b)。國民中學數學教科書第五冊。臺南:康軒。
曾志朗(1991)。華語文的心理學研究,本土化的沈思。載於楊中芳、高尚仁(主編),中國人、中國心—發展與教學篇(539-582)。台北:遠流。
翰林出版社(2009a)。國民中學數學教科書第四冊。臺南:翰林。
翰林出版社(2009b)。國民中學數學教科書第五冊。臺南:翰林。
國民中學學生基本學力測驗推動工作委員會(2012年9月4日)。歷屆試題。取自http://www.bctest.ntnu.edu.tw/
國家教育研究院(2011a)。國民中學數學教科書第四冊。臺北:國家教育研究院。
國家教育研究院(2011b)。國民中學數學教科書第五冊。臺北:國家教育研究院。
Alcock, L., & Weber, K. (2005). Proof validation in real analysis: Inferring and evaluating warrants. Journalof Mathematical Behavior, 24(2), 125-134.
Alexander, P. A., & Fox, E. (2004). A historical perspective on reading research and practice. Theoretical models and processes of reading, 5, 33-68.
Adams, M. J. (1990). Beginning to read: Thinking and learning about print. Cambridge, MA: MIT.
Adams, T. L. (2003). Reading mathematics: More than words can say. The Reading Teacher, 56, 786-795.
Andrà, C., Arzarello, F., Ferrara, F., Holmqvist, K., Lindstrom, P., Robutti, O., & Sabena, C. (2009). How students read mathematical representations: An eye tracking study. In M. Tzekaki, M. Kaldrimidou & H. Sakonidis (Eds.). Proceedings of the 33rd Conference of the International Group for the Psychology of Mathematics Education, Vol. 2 (pp. 49-56). Thessaloniki, Greece: PME.
Baddeley, A. (1992). Working memory. Science, 255(5044), 556-559.
Baddeley, A. (2000). The episodic buffer: a new component of working memory? Trends in cognitive sciences, 4(11), 417-423.
Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological bulletin, 91(2), 276-292.
Becker, J., & Varelas, M. (1993). Semiotic aspects of cognitive development - illustrations from early mathematical cognition. Psychological Review, 100 (3), 420-431.
Boucheix, J. M., & Lowe, R. K. (2010). An eye tracking comparison of external pointing cues and internal continuous cues in learning with complex animations. Learning and Instruction, 20(2), 123-135.
Britton, B. K., & Glynn, S. M. (1982). Effects of text structure on use of cognitive capacity during reading. Journal of Educational Psychology, 74(1), 51-61.
Brown, R., Pressley, M., Van Meter, P., & Schuder, T. (1996). A quasi-experimental validation of transactional strategies instruction with low-achieving second-grade readers. Journal of educational psychology, 88, 18-37.
Canham, M., & Hegarty, M. (2010). Effects of knowledge and display design on comprehension of complex graphics. Learning and Instruction, 20(2), 155-166.
Chall, J.S. (1995). Stages of Reading Development (2nd ed.). New York, NY.
Chandler, P., & Sweller, J. (1992). The split‐attention effect as a factor in the design of instruction. British Journal of Educational Psychology, 62(2), 233-246.
Chen, C. Y., & Wu, C. J. (2012, July). Color effects in reading geometry proofs: Evidence from eye movements and recall tests. In T. Y. Tso (Ed.), Proceedings of the 36th Conference of the International Group for the Psychology of Mathematics Education, Vol. 4 (p. 256). Taipei, Taiwan: PME.
Cheng, Y. H., & Lin, F. L. (2005). One more step toward acceptable proof in geometry. Symposium conducted at the meeting of 11th EARLI Conference, Nicosia, Cyprus.
Clark, J. M., & Campbell, J. I. D. (1991). Integrated versus modular theories of number skills and acalculia. Brain and Cognition, 17, 204-239.
Cocking, R. R., & Mestre, J. P. (1988). Linguistic and Cultural Influences on Learning mathematics. Hillsdale, NJ: Lawrence Earlbaum Associates.
Deering, M. (1995, September). Geometry compression. Proceedings of the 22nd annual conference on Computer graphics and interactive techniques (pp. 13-20). LA., USA: ACM.
delMas, R. O. B. E. R. T., Garfield, J. O. A. N., & Ooms, A. (2005, July). Using assessment items to study students’ difficulty reading and interpreting graphical representations of distributions. In K. Makar (Ed.), Proceedings of the Fourth International Research Forum on Statistical Reasoning, Literacy, and Reasoning (on CD). Auckland, New Zealand: University of Auckland.
Dewolf, T., Van Dooren, W., Hermens, F., & Verschaffel, L. (2012). Students’ Eye Movements when Solving Mathematical Word Problems together with Illustrations. Staging knowledge and experience: how to take advantage of representational technologies in education and training, 55-57.
Dole, J. A., Duffy, G. G., Roehler, L. R., & Pearson, P. D. (1991). Moving from the old to the new: Research on reading comprehension instruction. Review of Educational Research, 61(2), 239-264.
Dau F. (2004). Types and Tokens for Logic with Diagrams. In: K. E. Wolff, H. Pfeiffer, & H. Delugach(Eds.), Conceptual Structures at Work: 12th International Conference on Conceptual Structures(pp. 62–93). Berlin: Springer.
Duval, R. (1995). Geometrical pictures: Kinds of representation and specific processing. In R. Suttherland & J. Mason (Eds.), Exploiting Mental Imagery with Computers in Mathematics Education (pp. 142-157). Berlin: Springer.
Duval, R. (1998). Geometry from a cognitive point of view. In C. Mammana & V. Villani (Eds.), Perspectives on the Teaching of Geometry for the 21st Century (pp. 37-52). Boston, MA: Kluwer Academic.
Duval, R. (1999). Representation, vision and visualization: Cognitive functions in mathematical thinking. Basic issues for Learning. In F. Hitt & M. Santos (Eds.), Proceedings of the 21st North American PME Conference, Vol. 1 (pp. 3-26). Columbus, OH, USA: PME.
Duval, R. (2002, November). Proof understanding in mathematics: What ways for students. Proceedings of 2002 international conference on mathematics: Understanding proving and proving to understand (pp. 61-77). Taipei, Taiwan. National Taiwan Normal University.
Epelboim, J., & Suppes, P. (2001). A model of eye movements and visual working memory during problem solving in geometry. Vision Research, 41(12), 1561-1574.
Erbas, A. K., & Yenmez, A. A. (2011). The effect of inquiry-based explorations in a dynamic geometry environment on sixth grade students’ achievements in polygons. Computers & Education, 57(4), 2462-2475.
Fischbein, E. (1993). The theory of figural concepts. Educational Studies in Mathematics, 24(2), 139-162.
Freedman, E. G., & Shah, P. (2002). Toward a model of knowledge-based graph comprehension. Diagrammatic representation and inference (pp. 18-30). Springer Berlin Heidelberg.
Friel, S. N., Curcio, F. R., & Bright, G. W. (2001). Making sense of graphs: Critical factors influencing comprehension and instructional implications. Journal for Research in mathematics Education, 124-158.
Gagné, E., Yekovich, C. and Yekovich, F. (1994). The cognitive Psychology of School Learning (2nd ed.). New York NY.
Gal, H., & Linchevski, L. (2010). To see or not to see: Analyzing difficulties in geometry from the perspective of visual perception. Educational Studies of Mathematics, 74, 163-183.
García, R. R., Quirós, J. S., Santos, R. G., González, S. M., & Fernanz, S. M. (2007). Interactive multimedia animation with Macromedia Flash in Descriptive Geometry teaching. Computers & Education, 49(3), 615-639.
Glenberg, A. M. & Langston, W. E. (1992). Comprehension of illustrated text : pictures help to build mental models . Journal of Memory and Language, 31, 129-151.
Glöckner, A., & Herbold, A. K. (2011). An eye‐tracking study on information processing in risky decisions: Evidence for compensatory strategies based on automatic processes. Journal of Behavioral Decision Making, 24(1), 71-98.
Goodman, K. S. (1970). Behind the eye: What happens in reading. Reading: Process and program, 3-38.
Gough, P.B., Ehri, L.C., & Treiman, R. (Eds.)(1992). Reading Acquisition. Hillsdale, NJ: Erlbaum.
Grainger, J., & Jacobs, A. M. (1996). Orthographic processing in visual word recognition: A multiple read-out model. Psychological Review, 103, 518-565.
Harel, G., & Sowder, L. (2007). Toward a comprehensive perspective on proof. In F. Lester (Ed.), Handbook of Research on Teaching and Learning Mathematics, Vol. 2 (pp. 805-842): NCTM.
Healy, L., & Hoyles, C. (2000). A study of proof conceptions in algebra. Journal for research in mathematics education, 396-428.
Heaver, B., & Hutton, S. B. (2011). Keeping an eye on the truth? Pupil size changes associated with recognition memory. Memory, 19(4), 398-405.
Hegarty, M., Canham, M. S., & Fabrikant, S. I. (2010). Thinking about the weather: How display salience and knowledge affect performance in a graphic inference task. Journal of experimental psychology. Learning, memory, and cognition, 36(1), 37.
Hegarty, M., Carpenter, P. A., & Just, M. A. (1991). Diagrams in the comprehension of scientific text. In Barr, R., Kamil, M. L., Mosenthal, P. B., & Pearson, P. D. (Eds.), Handbook of Reading Research, Vol. 2 (pp. 641-668). Longman, New York.
Hegarty, M., Mayer, R. E., & Green, C. E. (1992). Comprehension of arithmetic word problems: Evidence from students’ eye fixations. Journal of Educational Psychology, 84(1), 76-84.
Hegarty, M., Mayer, R. E., & Monk, C. A. (1995). Comprehension of arithmetic word problems: A comparison of successful and unsuccessful problem solvers. Journal of educational psychology, 87, 18-32.
Herbst, P. (2004). Interactions with diagrams and the making of reasoned conjectures in geometry. ZDM, 36(5), 129-139.
Hiebert, J. (1988). A theory of developing competence with written mathematical symbols. Educational studies in mathematics, 19(3), 333-355.
Höffler, T. N., & Leutner, D. (2007). Instructional animation versus static pictures: A meta-analysis. Learning and instruction, 17(6), 722-738.
Hubbard, R. (1990). Teaching mathematics reading and study skills. International Journal of Mathematical Education in Science and Technology, 21, 265-269.
Inglis, M., & Alcock, L. (2012). Expert and novice approaches to reading mathematical proofs. Journal for Research in Mathematics Education, 43(4), 358-390.
Iqbal, S. T., Zheng, X. S., & Bailey, B. P. (2004, April). Task-evoked pupillary response to mental workload in human-computer interaction. In CHI'04 extended abstracts on Human factors in computing systems (pp. 1477-1480). ACM.
Jamet, E., Gavota, M., & Quaireau, C. (2008). Attention guiding in multimedia learning. Learning and Instruction, 18, 135-145.
Juhasz, B. J., & Rayner, K. (2003). Investigating the effects of a set of intercorrelated variables on eye fixation durations in reading. Journal of experimental psychology. Learning, memory, and cognition, 29(6), 1312.
Just, M. A., & Carpenter, P. A. (1985). Cognitive coordinate systems: Accounts of mental rotation and individual differences in spatial ability.Psychological review, 92, 137-172.
Kaakinen, J. K., Hyönä, J., & Keenan, J. M. (2003). How prior knowledge, working memory capacity, and relevance of information affect eye-fixations in expository text. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29(3), 447-457.
Kalyuga, S., Chandler, P., & Sweller, J. (1999). Managing split-attention and redundancy in multimedia instruction. Applied cognitive psychology, 13(4), 351-371.
Kintsch, W. (1988). The use of knowledge in discourse processing: A construction-integration model. Psychological Review, 95, 163-182.
Kintsch, W. (1998). Comprehension: A Paradigm for Cognition. New York: Cambridge University.
Kintsch, W., & van Dijk, T.A. (1978). Towards a model of text comprehension and production. Psychological Review, 85, 363-394.
Kosslyn, S. M. (1989) .Understanding charts and graphs. Applied Cognitiy Psychology, 3, 185-226.
Koedinger, K. R., & Anderson, J. R. (1990). Abstract planning and perceptual chunks: Elements of expertise in geometry. Cognitive Science, 14(4), 511-550.
Knuth, E. J. (2002). Secondary school mathematics teachers’ conceptions of proof. Journal for Research in Mathematics Education, 33, 379-405.
Kucan, L., & Beck, I. L. (1997). Thinking aloud and reading comprehension research: Inquiry, instruction, and social interaction. Review of educational research, 67(3), 271-299.
Kuchinke, L., Võ, M. L., Hofmann, M., & Jacobs, A. M. (2007). Pupillary responses during lexical decisions vary with word frequency but not emotional valence.International Journal of Psychophysiology, 65(2), 132-140.
Larkin, J. H., & Simon, H. A. (1987). Why a diagram is (sometimes) worth ten thousand words. Cognitive science, 11(1), 65-100.
Laborde, C. (2005). The hidden role of diagrams in students’ construction of meaning in geometry. In Meaning in mathematics education (pp. 159-179). Springer.
Lee, T. N., & Cheng, Y. H. (2007). The performance of geometric argumentation in one step reasoning. In J. H. Woo, H. C. Lew, K. S. Park, & D. Y. Seo (Eds.), Proceedings of the 31st Annual Conference of the International Group for the Psychology of Mathematics Education (p. 256). Seoul, Korea: PME.
Lemke, J. L. (1999). Typological and topological meaning in diagnostic discourse. Discourse Processes, 27(2), 173-185.
Lin, F. L., & Cheng, Y. H. (2003, December). linfl team (2003): The Competence of Geometric Argument in Taiwan Adolescents. In International Conference on Science & Mathematics Learning (pp. 16-18). Taipei, Taiwan.
Loman, N. L., & Mayer, R. E. (1983). Signaling techniques that increase the understandability of expository prose. Journal of Educational Psychology, 75(3), 402-12.
Lorch Jr, R. F., Lorch, E. P., & Matthews, P. D. (1985). On-line processing of the topic structure of a text. Journal of Memory and Language, 24(3), 350-362.
Lorch, R. F., Lorch, E. P., & Inman, W. E. (1993). Effects of signaling topic structure on text recall. Journal of Educational Psychology, 85(2), 281.
Lovett, M. C., & Anderson, J. R. (1994). Effects of solving related proofs on memory and transfer in geometry problem solving. Journal of Experimental Psychology: Learning, Memory, and Cognition, 20(2), 366-378.
Lowe, R. K. (1993). Constructing a mental representation from an abstract technical diagram. Learning & Instruction, 3, 157-179.
Lowe, R. K. (1999). Extracting information from an animation during complex visual learning.European Journal of Psychology of Education, 14(2), 225-244.
Lowrie, T., & Diezmann, C. M. (2005). Fourth‐grade students’ performance on graphical languages in mathematics. In H. L. Chick & J. L. Vincent (Eds.), Proceedings of the 29th Annual Conference of the International Group for the Psychology of Mathematics Education ,Vol. 3 (pp. 265-272). Melbourne: PME.
Lowrie, T., Diezmann, C., & Logan, T. (2011). Understanding graphicacy: Students’ making sense of graphics in mathematics assessment tasks. International Journal for Mathematics Teaching and Learning, 1-32.
Mackinlay, J. (1986). Automating the design of graphical presentations of relational information. ACM Transactions on Graphics (TOG), 5(2), 110-141.
Marrades, R., & Gutierrez, A. (2000). Proofs produced by secondary school students learning geometry in a dynamic computer environment. Educational studies in mathematics, 44(1-2), 87-125.
Marshall, S. P. (2002). The index of cognitive activity: Measuring cognitive workload. Proceedings of the 2002 IEEE 7th conference on Human factors and power plants (pp. 7-5). IEEE.
Mautone, P. D., & Mayer, R. E. (2001). Signaling as a cognitive guide in multimedia learning. Journal of Educational Psychology, 93(2), 377-389.
Mautone, P. D., & Mayer, R. E. (2007). Cognitive aids for guiding graph comprehension. Journal of Educational Psychology, 99(3), 640.
Mayer, R. E. (1996). Learning strategies for making sense out of expository text: The SOI model for guiding three cognitive processes in knowledge construction. Educational Psychology Review, 8, 357-371.
Mayer, R. E. (2005). Cognitive theory of multimedia learning. In R. E. Mayer (Ed.), The Cambridge Handbook of Multimedia Learning (pp. 31-48). Cambridge: Cambridge University.
Mayer, R. E. (2008). Learning and Instruction (2nd ed.). Upper Saddle River, NJ: Pearson Prentice Hall.
Mayer, R. E. (2010). Unique contributions of eye-tracking research to the study of learning with graphics. Learning and instruction, 20(2), 167-171.
Mayer, R. E., Hegarty, M., Mayer, S., & Campbell, J. (2005). When static media promote active learning: Annotated illustrations versus narrated animations in multimedia instruction. Journal of Experimental Psychology Applied, 11(4), 256.
Mayer, R. E., & Moreno, R. (2003). Nine ways to reduce cognitive load in multimedia learning. Educational psychologist, 38(1), 43-52.
McClelland, J. L., & Rumelhart, D. E. (1981). An interactive activation model of context effects in letter perception: Part 1. An account of basic findings. Psychological Review, 88, 375-407.
Mejia-Ramos, J. P., & Inglis, M. (2009). Argumentative and proving activities in mathematics education research. In F. L. Lin, F. J. Hsieh, G. Hanna, & M. de Villiers (Eds.), Proceedings of the ICMI Study 19 conference: Proof and Proving in Mathematics Education, Vol. 2 (pp. 88–93). Taipei, Taiwan: National Taiwan Normal University.
Moore, R. C.(1994). Making the transition to formal proof. Educational Studies in Mathematics, 27, 249-266.
Myers, J., & O’Brien, E. (1998). Accessing the discourse representation during reading. Discourse Processes, 26 (2 & 3), 137-157.
Nieuwenhuis, S., De Geus, E. J., & Aston‐Jones, G. (2011). The anatomical and functional relationship between the P3 and autonomic components of the orienting response. Psychophysiology, 48(2), 162-175.
Ögren, M., & Nyström, M. (2012). How illustrations influence performance and eye movement behaviour when solving problems in vector calculus. LTHs 7: e Pedagogiska Inspirationskonferens.
Österholm, M. (2006). Characterizing reading comprehension of mathematical texts. Educational Studies in Mathematics, 63(3), 325-346.
Österholm, M. (2007). A reading comprehension perspective on problem solving. In C. Bergsten & B. Grevholm (Eds.). Developing and Researching Quality in Mathematics Teaching and Learning. Proceedings of MADIF 5, the 5th Swedish Mathematics Education Research Seminar, Malmö (pp. 136-145). Linköping: SMDF.
Ozcelik, E., Karakus, T., Kursun, E., & Cagiltay, K. (2009). An eye-tracking study of how color coding affects multimedia learning. Computers & Education, 53(2), 445-453.
Paivio, A. (1971). Imagery and Verbal processes, New York: Holt, Rinehart and Winston.
Paivio, A. (1991). Dual coding theory: Retrospect and current status. Canadian Journal of Psychology, 45(3), 255-287.
Palinscar, A. S., & Brown, A. L. (1984). Reciprocal teaching of comprehension-fostering and comprehension-monitoring activities. Cognition and instruction, 1(2), 117-175.
Paivio, A. (2006). Mind and Its Evolution: A Dual Molding Theoretical Interpretation, Mahwah, NJ: Lawrence Erlbaum Associates, Inc.
Partala, T., & Surakka, V. (2003). Pupil size variation as an indication of affective processing. International journal of human-computer studies, 59(1), 185-198.
Peters, M. (2010). Parsing Mathematical Constructs: Results from a Preliminary Eye Tracking Study. In Joubert, M. (Ed.) Proceedings of the British Society for Research into Learning Mathematics, 30(2), 47-52.
Pimm, D., & Wagner, D. (2003). Investigation, mathematics education and genre: An essay review of Candia Morgan's Writing Mathematically: the Discourse of Investigation. Educational Studies in Mathematics, 53(2), 159-178.
Pinker, S. (1990). A theory of graph comprehension. In R. Frele (Ed.), Artificial Intelligence and the Future of Testing (pp. 73–126). Hillsdale, NJ: Erlbaum
Piquado, T., Isaacowitz, D., & Wingfield, A. (2010). Pupillometry as a measure of cognitive effort in younger and older adults. Psychophysiology, 47(3), 560-569.
Pólya, G.(1995)。怎樣解題(閻育蘇譯)。台北:九章。(原著出版於1957)
Pólya, G. (2008). How to solve it: A new aspect of mathematical method. Princeton University.
Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372-422.
Rayner, K., Rotello, C. M., Stewart, A. J., Keir, J., & Duffy, S. A. (2001). Integrating text and pictorial information: Eye movements when looking at print advertisements. Journal of Experimental Psychology: Applied, 7(3), 219-226.
Russo, J. E., Johnson, E. J., & Stephens, D. L. (1989). The validity of verbal protocols. Memory & cognition, 17(6), 759-769.
Sadoski, M., & Paivio, A. (2001). Imagery and text: A Dual Coding Theory of Reading and Writing. Mahwah, NJ: Lawrence Erlbaum Associates.
Sadoski, M. & Paivio, A. (2004). A dual coding theoretical model of reading. In R. B. Ruddell & N. J. Unrau (Eds.), Theoretical Models and Processes of Reading (5th ed.) (pp. 1329-1362). Newark, DE: International Reading Association.
Sadoski, M., Paivio, A., & Goetz, E. T. (1991). A critique of schema theory in reading and a dual coding alternative. Reading Research Quarterly, 26, 463-484.
Schmalhofer, F., McDaniel, M. A., & Keefe, D. (2002). A unified model for predictive and bridging inferences. Discourse Processes, 33, 105-132.
Schooler, J. W., Ohlsson, S., & Brooks, K. (1993). Thoughts beyond words: When language overshadows insight. Journal of Experimental Psychology General, 122, 166-183.
Selden, J., & Selden, A. (1995). Unpacking the logic of mathematical statements. Educational Studies in Mathematics, 29(2), 123-151.
Selden, A., & Selden, J. (2003). Validations of proofs considered as texts: Can undergraduates tell whether an argument proves a theorem? Journal for Research in Mathematics Education, 34, 4-36.
Shah, P., & Freedman, E. G. (2003). Visuospatial cognition in electronic learning. Journal of Educational Computing Research, 29(3), 315-324.
Shah, P., & Freedman, E. G. (2011). Bar and Line Graph Comprehension: An Interaction of Top‐Down and Bottom‐Up Processes. Topics in Cognitive Science, 3(3), 560-578.
Shah, P., Mayer, R. E., & Hegarty, M. (1999). Graphs as aids to knowledge construction: Signaling techniques for guiding the process of graph comprehension. Journal of Educational Psychology, 91, 690-702.
Stenning, K., & Oberlander, J. (1994). A cognitive theory of graphical and linguistic reasoning: Logic and implementation. Cognitive Science, 19, 97-140.
Stern, E., Aprea, C., & Ebner, H. G. (2003). Improving cross-content transfer in text processing by means of active graphical representation. Learning and Instruction, 13(2), 191-203.
Sweller, J. & Chandler, P. (1994). Why some material is difficult to learn. Cognition and Instruction, 12(3), 185-233.
Tversky, B., Morrison, J. B., & Betrancourt, M. (2002). Animation: can it facilitate?. International journal of human-computer studies, 57(4), 247-262.
Usiskin, Z. (1980). What should not be in the algebra and geometry curricula of averagecollege-bound students? The Mathematics Teacher, 73, 413-424.
Van Gerven, P. W., Paas, F., Van Merriënboer, J. J., & Schmidt, H. G. (2004). Memory load and the cognitive pupillary response in aging. Psychophysiology, 41(2), 167-174.
Velichkovsky, B. M., Rothert, A., Kopf, M., Dornhofer, S. M., & Joos, M. (2002). Towards an express-diagnostics for level ofprocessing and hazard perception. Transportation Research Part F: Traffic Psychology and Behaviour, 5, 145-156.
Verney, S. P., Granholm, E., & Marshall, S. P. (2004). Pupillary responses on the visual backward masking task reflect general cognitive ability. International Journal of Psychophysiology, 52(1), 23-36.
Võ, M. L. –H., Jacobs, A. M., Kuchinke, L., Hofmann. M. H., Conrad, M., Schacht, A., & Hutzler, F. (2008). The coupling of emotion and cognition in the eye: Introducing the pupil old/new effect. Psychophysiology, 45, 130–140.
Weber, K. & Alcock, L. (2005). Using warranted implications to understand and validate proofs. For the Learning of Mathematics, 25(1), 34-38.
Weber, K., & Mejia-Ramos, J.-P. (2011). Why and how mathematicians read proofs: An exploratory study. Educational Studies in Mathematics, 76, 329-344. doi:10.1007/s10649-010-9292-z.
Yang, K. L. (2011). Structures of cognitive and metacognitive reading strategy use for reading comprehension of geometry proof. Educational Studies in Mathematics. doi:10.1007/s10649-011-9350-1.
Yang, K. L., Lin, F. L., & Wang, Y. T. (2008). The effects of proof features and question probing on understanding geometry proof. Contemporary Educational Research Quarterly, 16(2), 77-100.
Zacks, J., Levy, E., Tversky, B., & Schiano, D.(2002). Graphs in Print. In P. Olivier, M. Anderson, B. Meyer (Eds.), Diagrammatic Representation and Reasoning. Springer. London, England.
Zacks, J., & Tversky, B. (1999). Bars and lines: A study of graphic communication. Memory & Cognition, 27(6), 1073-1079.
Zhang, J., & Norman, D. A. (1994). Representations in distributed cognitive tasks. Cognitive science, 18(1), 87-122.

下載圖示
QR CODE