簡易檢索 / 詳目顯示

研究生: 楊小娟
Hsiao-Chuan Yang
論文名稱: 甲醛自由基及其複合物分子內氫原子轉移的理論研究
Theoretical Study of Intra-molecular Hydrogen Transfer of Formyl radical and Its complexes
指導教授: 何嘉仁
Ho, Jia-Jen
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
畢業學年度: 87
語文別: 中文
論文頁數: 111
中文關鍵詞: 甲醛自由基氫原子轉移初始法
英文關鍵詞: formyl radical, hydrogen transfer, ab initio
論文種類: 學術論文
相關次數: 點閱:246下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中 文 摘 要
    本論文藉由ab initio理論計算的方法,在HF、MP2以及B3LYP層次下,使用6-311G**以及6-311++G**的基底群,對各穩定點及其相對應過渡結構做全面性的幾何優選,以探討甲醛自由基(HCO)及其複合物的分子內氫原子轉移時的各項性質;最終相對能量的決定,則再以G2理論深入探討比較。共分為以下四個單元進行研究:
    第一單元 研究最簡單的甲醛自由基(HCO) 的分子內氫原子轉移。研究結果發現在DFT方法中的B3LYP/6-311++G**層級所得的計算結果結構上與實驗值非常的接近,所得結果RC-O=1.174 A、RC-H =1.125 A、∠HCO=124.5° ,相對於先前的研究而言,DFT的方法可以說在結構上的準確度極高而又相當節省計算的時間,而對於氫原子轉移路徑的能障在各層級計算的結果為大約在64~69 kcal/mol 左右,而比較H-CO鍵的鍵能在G2層級包含BSSE校正後的計算結果為13.72 kcal/mol,也與實驗值相當符合。
    第二單元 研究甲醛自由基(HCO)和O2分子所形成複合物formylperoxy radical ( HC(O)OO )的分子內氫原子轉移,在基態底下計算HC(O)OO的分子結構,可以得到E、Z form 兩種不同構形的複合物,而經由氫原子轉移之後可以得到三種不同的產物,第一種產物為異構化產物生成carbene的結構產物,是一個高位能產物,能量較反應物(HCO+O2)高出將近~40 kcal/mol,是一個不穩定的中間產物,能障亦相當高。在B3LYP/6-311++G**層級計算溫度為298 K的能量,第二種產物為HO2+CO其可能路徑的活化能ΔEa相對反應物而言為 0.2 kcal/mol;至於第三種產物OH+CO2此反應路徑其活化能ΔEa相對反應物而言為 9.5 kcal/mol,如先前的預測所言此路徑的能障較高應是在激發態的狀態下較有可能發生。對於影響不同路徑間的氫原子轉移能障的大小以過渡態為三圓環或四圓環的立體緊張度為最重要,四圓環一般而言較三圓環容易轉移,但四圓環中亦有結構鬆緊的問題,結構較硬的四圓環可能能障較三圓環高。
    第三單元 研究甲醛自由基(HCO)和NO2分子所形成複合物Nitrosylformate ( HC(O)NO2 )的分子內氫原子轉移,研究結果共有四種複合物的分子內氫原子轉移路徑,可以得知氫原子的轉移過程以過渡狀態結構來看可以分為三圓環、四圓環和五圓環的轉移。發現氫原子的轉移三圓環的能障比四、五圓環的能障高了許多,四圓環與五圓環的能障相差不多,因為起始結構的不同以及起始原子(C)和目的原子(O)的距離較長的緣故,也有可能五圓環的能障較高;所以對於相同的起始物而言,過渡狀態結構的立體障礙確實主宰了氫原子轉移能障的高低。
    第四單元 研究甲醛自由基(HCO)和NO3分子所形成(HC(O)NO3)複合物的分子內氫原子轉移,研究結果發現形成複合物的結合能相當的高,而氫原子轉移之後所得的結果產物硝酸(HNO3)與實驗上所觀測得到的產物相同,代表理論計算的結果應可提供實驗上或理論上相當可靠的參考。
    第五單元 研究甲醛自由基(HCO)和O3分子所形成(HC(O)O3)複合物的分子內氫原子轉移,研究結果發現形成複合物I、II、III,複合物I的能量相當的高,氫原子轉移路徑為無能障的轉移路徑,與其他的氫原子轉移路徑極為不同,而複合物II、III氫原子轉移之後所得的裂解產物為CO+HOOO與CO+HO3,前者HOOO氫原子接在末端的氧原子上,後者HO3氫原子接在中間的氧原子上,兩者能量上差異頗大。

    Abstract
    This dissertation deals with the calculation of intramolecular hydrogen transfer of formyl radical and its derivative complexes by ab initio and DFT methods. Each local minimum and its corresponding TS are fully optimized with 6-311G** and 6-311++G** basis sets at the levels of HF、MP2 and B3LYP. Relative energies of species are finally evaluated at B3LYP、MP2 or G2 theory. There are five sections rendered here.
    Section 1: First of all, we study the intramolecular hydrogen transfer of the formyl radical (HCO), which is a trial and used as a comparison to the data in the literature. Results indicate that structure of HCO calculated by DFT method with B3LYP/6-311++G** level is very close to the experimental values. The result is RC-O=1.174 A、RC-H=1.125 A and ∠HCO=124.5°. With respect to previous studies, DFT method takes shorter time in calculating and more accurate in the geometry structure. However in other levels, the calculated barrier is about 64~69 kcal/mol for the intramolecular hydrogen transfer. The binding energy of H-CO bond calculated by G2 method including BSSE correction is –13.72 kcal/mol.
    Section 2: Intramolecular hydrogen transfer of complex of HC(O)O2 is studied in this section. In ground state, formylperoxy radical is found to have two isomers, among which are Z and E forms. There are three different product channels in performing intramolecular hydrogen transfer onto the two isomers. The first product is like a carbene structure having higher energy than the reactants (HCO+O2) by 40 kcal/mol. The second channel produces HO2+CO with activation energy of 0.201 kcal/mol at 298 K, B3LYP/6-311++G** level. The activation energy of the third product channel (OH+CO2) is 9.5 kcal/mol. We concluded that the barrier of intramolecular hydrogen transfer is affected by the strain of the transition structure.
    Section 3: We studied the intramolecular hydrogen transfer of the Nitrosylformate complex HC(O)NO2. There were four paths of hydrogen transfer discussed, which include the transition structure of 3-, 4-, or 5- member ring. It is found that the barrier of 3- member ring is the highest and that of 4- member ring is almost equal to the barrier of 5- member ring. Because of different structure and distance between the original atom (C) and the target atom (O), 5-member ring has a higher energy barrier. The strain of the transition state surely dominates the energy barrier of the hydrogen transfer.
    Section 4:  The intramolecular hydrogen transfer of HC(O)NO3 complex is also studied. The binding energy of HCO and NO3 is quite high. The resultant product (HNO3) is also observed by experiment.
    Section 5: Finally, we focused our study on the intramolecular hydrogen transfer of HC(O)O3 complex. There are three isomers of HC(O)O3. The first isomer (complex I) has no barrier for the hydrogen transfer. The splitting products of the complex, II and III, after hydrogen transfer are CO+HOOO and CO+HO3, respectively, their energy differences are quite large.

    總 目 錄 中文摘要 iii 英文摘要 vi §1. Formyl radical的分子內氫原子轉移理論研究 1 §1.1 前言 1 §1.2 計算方法 3 §1.3 結果與討論 4 §1.4 結論 15 §1.5 參考文獻 16 §2. Formylperoxy radical的分子內氫原子轉移理論研究 19 §2.1 前言 19 §2.2 計算方法 21 §2.3 結果與討論 22 §2.4 結論 38 §2.5 參考文獻 39 §3. Nitrosylformate的分子內氫原子轉移理論研究 43 §3.1 前言 43 §3.2 計算方法 44 §3.3 結果與討論 46 §3.4 結論 68 §3.5 參考文獻 69 §4. HCO和NO3所形成複合物的分子內氫原子轉移理論研究 71 §4.1 前言 71 §4.2 計算方法 72 §4.3 結果與討論 73 §4.4 結論 84 §4.5 參考文獻 85 §5. HCO和O3所形成複合物的分子內氫原子轉移理論研究 86 §5.1 前言 86 §5.2 計算方法 86 §5.3 結果與討論 87 §5.4 結論 97 §5.5 參考文獻 98 §6. 總結 99 §A. 附錄 102

    §1-5. 參考文獻
    1. Adrian, F. J.;Cochran, E. L.;Bowers, V. A. J. Chem. Phys., 1962, 36, 1661.
    2. Slagle, I. R.; Graham, R. G.; Gutman, D. Int. J. Chem. Kinet., 1976, 8, 451.
    3. (a) Johns, J. W. C.; Priddle, S. H.; Ramsay, D. A.; Discussions Faraday Soc. 1963, 35, 90. (b) Johns, J. W. C.; Priddle, S. H.; Ramsay, D. A.; Discussions Faraday Soc. 1963, 35, 158. (c) Pimentel, G. C.; Herr, K. C. J. Chem. Phys., 1964, 61, 1509.
    4. Ewing, G. E.; Thompson, W. E.; Pimentel, G. C. J. Chem. Phys. 1960, 32, 927.
    5. Milligan, D. E.; Jacox, M. E. J. Chem. Phys. 1964, 41, 3032.
    6. Austin, J. A.; Levy, D. H.; Gottlieb, C. A.; Radford, H. E. J. Chem. Phys. 1974, 60, 207.
    7. Brown, J. M.; Ramsay, D. A.; Can. J. Phys. 1975, 53, 2232.
    8. Bowater, I. C.; Brown, J. M.; Carrington, A. J. Chem. Phys. 1971, 54, 4957.
    9. Vaidya, W. M.; Proc. Roy. Soc. (London), 1934, 147A, 513.
    10. Vaidya, W. M.; Proc. Roy. Soc. (London), 1964, 279A, 572.
    11. Ramsay, D. A. J. Chem. Phys., 1953, 21, 960.
    12. Herzberg, G.; Ramsay, D. A. Proc. Roy. Soc. (London), 1955, 233A, 34.
    13. Milligan, D. E.; Jacox, M. E. J. Chem. Phys. 1969, 51,227.
    14. Shirk, J. S.; Pimentel, G. C. J. Am. Chem. Soc. 1968, 90, 3349.
    15. Raynes, W. T. J. Chem. Phys., 1964, 41, 3020.
    16. Murray, K. K.; Miller, T. M.; Leopold, D. G.; Lineberger, W. C. J. Chem. Phys., 1986, 84, 2520.
    17. Sappey, A. D.; Crosley, D. R. J. Chem. Phys., 1990, 93, 7601.
    18. Tobiason, J. D.; Dunlop, J. R.; Rohlfing, E. A. J. Chem. Phys., 1995, 103, 1448.
    19. Bowman, J. M.; Bittman, J. S.; Harding, L. B. J. Chem. Phys., 1986, 85, 911.
    20. Manaa, M. R.; Yarkony, D. R. J. Chem. Phys., 1993, 99, 5251.
    21. Manaa, M. R.; Yarkony, D. R. J. Chem. Phys., 1994, 100, 473.
    22. Werner, H. –J.; Bauer, C.; Rosmus, P.; Keller, H. –M.; Stumpf, M.; Schinke, R. J. Chem. Phys., 1995, 102, 3595.
    23. Loettgers, A.; Untch, A.; Werner, H. –J.; Bauer, C.; Rosmus, P.; Keller, H. –M.; Schinke, R. J. Chem. Phys., 1997, 106, 3186.
    24. Fahr, A.; Laufer, A. H.; Krauss, M.; Osman, R. J. Phys. Chem., 1997, 101, 4879.
    25. Yu, J. K.; Yu, C. Chem. Phys. Lett. 1997, 271, 259.
    26. Gaussian 94 (Revision A.1),Frisch, M. J.; Turcks, G. W.; Schlegel, H. B.; Gills, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Petersson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; Replogle, E. S.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C. and Pople, J. A. (Gaussian, Inc., Pittsburgh PA, 1995).
    27. (a)Head-Gordon, M.; Pople, J. A.; Frisch, M. J. Chem. Phys. Lett. 1988, 153, 503.(b)Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 275. (b)Frisch, M. J.; Head-Gordon, M.; Pople, J. A. Chem. Phys. Lett. 1990, 166, 281.(d)Saebo, S.; Almlof, J. Chem. Phys. Lett. 1989, 154, 83.
    28. (a)Becke, A. D. J. Chem. Phys. 1993, 98, 5648.(b) Becke, A. D. J. Chem. Phys. 1992, 96, 2155.(c) Becke, A. D. J. Chem. Phys. 1992, 97, 9173.(d) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B, 1988, 37, 785.
    29. (a) Pople, J. A.; Head-Gordon, M. D.; Fox, J.; Raghavachari, K.; Curtiss, L. A. J. Chem. Phys. 1989, 90, 5622.(b) Curtiss, L. A.; Jones, C.; Trucks, G. W.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 1990, 93, 2537. (c) Curtiss, L. A.; Raghavachari, K.; Trucks, G. W.; Pople, J. A. J. Chem. Phys. 1991, 94, 7221. (d) Curtiss, L. A.; Raghavachari, K.; Pople, J. A. J. Chem. Phys. 1993, 98, 1293.
    30. Yongping, P.; Michael, A. M. J. Am. Chem. Soc., 1997, 119, 7561.
    31. Mebel, A. M.; Diau, E. W. G.; Lin, M. C.; Morokuma, K. J. Am. Chem. Soc., 1996, 118, 9759.
    32. Curtiss, L. A.; Trucks, G. W.; Raghavachari, K.; Pople, J. A. J. Chem. Phys., 1991, 94, 7221.
    33. Pople, J. A.; Gordon, M. H.; Fox, D. J.; Raghavachari, K.; Curtiss, L. A. J. Chem. Phys., 1989, 90, 5622.
    34. Curtiss, L. A.; Jones, C.; Trucks, G. W.; Raghavachari, K.; Pople, J. A. J. Chem. Phys., 1990, 93, 2537.
    35. Chuang, M. –C.; Foltz, M. F.; Moore, C. B. J. Chem. Phys., 1987, 87, 3855.
    §2-5. 參考文獻
    1. Finlayson, B. J.; Pitts, J. N. Jr. Science, 1976, 192, 111.
    2. Leighton, P. A. “Photochemistry of Air Pollution”, Academic Press, New York, N. Y., 1961.
    3. (a) Su, F. J.; Calvert, G. J.; Shaw, H. J. Phys. Chem. 1979, 83, 3185. (b) Burrows, J. P.; Moortgat, G. K.; Tyndall, G. S.; Cox, R. A.; Jenkin, M. E. Hayman, G. D.; Veyret, B. J. Phys. Chem. 1989, 93, 2375.
    4. (a) Veyret, B.; Rayez, J. –C.; Lesclaux, R.; J. Phys. Chem. 1982, 86, 3424. (b) Moortgat, G. K.; Seiler, W.; Warneck, P. J. Phys. Chem. 1983, 78, 1185. (c) Barnes, I.; Becker, K. H.; Fink, E.; Reimer, H. A.; Zabel, F.; Niki, H. Chem. Phys. Lett. 1985, 115, 1.
    5. Jemi-Alade, A. A.; Lightfoot, P. D.; Lesclaux, R. Chem. Phys. Lett. 1992, 195, 25.
    6. Atri, G. M.; Baldwin, R. R.; Jackson, P.; Walker, R. W. Combust. Flame. 1977, 30, 1.
    7. Atkinson, R.; Baulch, D. L.; Cox, R. A.; Hampson, R. F.; Kerr, J. A. Jr.(Chairman); Troe, J. J. Phys. Chem. Ref. Data. 1989, 18, 895.
    8. Albers, E. A.; Hoyermann, K.; Wagner, H.G.;Wolfrum, J. Thirteenth Symposium (International ) on Combustion, The Combustion Institute, Pittsburgh, 1971, P. 81.
    9. Gaydon, A. G. “Spectroscopy of Flames”, Chapman & Hall, London, 1957.
    10. Okabe, H. “Photochemistry of small Molecules” (Wiley, New York 1978 ).
    11. Niki, H.; Maker, P. D.; Savage, C. M.; Breitenbach, L. P. Chem. Phys. Lett. 1980, 72, 72.
    12. Washida, N.; Martinez, R. I.; Bayes, K. D. Z. Naturforsch. A, 1974, 29, 251.
    13. Shibuya, K.; Ebata, T.; Obi, K.; Tanaka, I. J. Phys. Chem. 1977, 81, 2292.
    14. Reilly, J. P.; Clark, J. H.; Moore, C. B.; Pimentel, G. C. J. Chem. Phys. 1978, 69, 4381.
    15. (a) Langford, A. O.; Moore, C. B. J. Chem. Phys. 1984, 80, 4204.(b) Langford, A. O.; Moore, C. B. J. Chem. Phys. 1984, 80, 4211.
    16. Osif, T. L.; Heicklen, J. J. Phys. Chem. 1976, 80, 1526.
    17. (a) Tso, T. –L.; Diem, M.; Lee, E. K. C. Chem. Phys. Lett. 1982, 91, 339.(b) Tso, T. –L.; Lee, E. K. C. J. Phys. Chem. 1984, 88, 5465. (c) Tso, T. –L.; Lee, E. K. C. J. Phys. Chem. 1984, 88, 5475.
    18. Ho, P.; Bamford, D. J.; Buss, R. J.; Lee, Y. T.; Moore, C. B. J. Chem. Phys. 1982, 76, 3630.
    19. (a) Ewing, G. E.; Thompson, W. E.; Pimentel, G. C. J. Chem. Phys. 1960, 32, 927.(b) Milligan, D. E.; Jacox, M. E. J. Chem. Phys. 1969, 51, 277.
    20. Lesclaux, R.; Roussel, P.; Veyret, B.; Pouchan, C. J. Am. Chem. Soc. 1986, 108, 3872.
    21. Timonen, R. S.; Ratajczak, E.; Gutman, D.; Wagner, A. F. J. Phys. Chem. 1987, 91, 5325.
    22. (a) Herron, J. T.; Martinez, R. I.; Huie, R. E. Intern. J. Chem. Kinetics. 1982, 14, 201. (a) Herron, J. T.; Martinez, R. I.; Huie, R. E. Intern. J. Chem. Kinetics. 1982, 14, 225.
    23. (a) Finlayson-Pitts, B. J.; Pitts, J. N. “Atmospheric Chemistry” ; Wile: New York, 1986; Chapter 7.(b) Wayne, R. P.; “Chemistry of the Atmosphere” ; Clarendon: Oxford, U. K. 1985; Chapter5.
    24. Westbrook, C. K.; Dryer, F. L. Prog. Energy Combust. Sci. 1984, 10, 1-57.
    25. (a) Temps, F.; Wagner, H. Gg. Ber. Bunsenges. Phys. Chem. 1984, 88, 410.(b) Westbrook, C. K.; Creighton, J.; Lund, C.; Dryer, F. L. J. Phys. Chem. 1977, 81, 2542.
    26. Yu, J. K.; Yu, C. Chem. Phys. Lett. 1997, 271, 259.
    27. Chuang, M. –C.; Foltz, M. F.; Moore, C. B. J. Chem. Phys. 1987, 87, 3855.
    28. Dmitruk, A. F.; Opeida, I. A. J. Struct. Chem. 1977, 18, 762.
    29. Thomas, L. A.; William, H. F.; David, H. V. J. Chem. Phys. 1996, 100, 5299.
    30. Hsu, C. C.; Mebel, A. M.; Lin, M. C. J. Chem. Phys. 1996, 105, 2346.
    31. Horowitz, A.; Su, F.; Calvert, J. G. Int. J. Chem. Kinet. 1978, 10, 1099.
    32. Timonen, R. S.; Ratajczak, E.; Gutaman, D. J. Phys. Chem. 1988, 92, 651.
    33. Veyret, B.; Lesclaux, R. J. Phys. Chem. 1981, 85, 1918.
    34. Stief, L. J.; Nesbitt, F. L.; Gleason, J. F. Abstracts of papers presented at the International Symposium of Gas Kinetics, Assisi, Italy, Sept. 1990.
    35. Brown, J. M.; Ramsay, D. A. Can. J. Phys. 1975, 53, 2232.
    36. JANAF Thermochemical Tables, 3rd ed.; Chase, Jr., M. W.; Davies, C. A.; Downey, Jr., J. R.; Frurip, D. J.; McDonald, R. A.; Syverud, A. N. J. Phys. Chem. Ref. Data, Suppl. 1985, 14.
    37. Tuckett, R. P.; Freedman, P. A.; Jones, W. J. Molecular Physics, 1979, 37, 403.
    38. Huber, K. P.; Herzberg, G. “Constants of Diatomic Molecules”, Van Nostrand Reinhold, New York, 1979.
    39. Murray, K. K.; Miller, T. M.; Leopold, D. G.; Lineberger, W. C. J. Chem. Phys. 1986, 84, 2520.
    40. (1) Mckellar, A. R. W. Faraday Discuss. Chem. Soc. 1981, 71, 63.(2) Yamada, C.; Endo, Y.; Hirota, E. J. Chem. Phys., 1983, 78, 4379.
    41. CODATA, Supplement II, 1984; IUPAC, Supplement III, 1989. And NASA Evaluation No. 9, 1990.
    §3-5. 參考文獻
    1. Miller, J. A.; Bowman, C. T. Prog. Energy Combust. Sci. 1989, 15, 287.
    2. (a)Tsang, W. ; Herron, J. T. J. Phys. Chem. Ref. Data. 1991, 20, 614. (b)Chase, M. W., Jr.; et. al. J. Phys. Chem. Ref. Data. 1985, 14, (Suppl. 1).
    3. Lin, C. –Y.; Wang, H. T.; Lin, M. C.; Melius, C. F. Int. J. Chem. Kinet. 1990, 22, 455.
    4. He, Y.; Kolby, E.; Shumaker, P.; Lin, M. C. Int. J. Chem. Kinet. 1989, 21, 1015.
    5. Barton, D. J. Phys. Chem. 1961, 65, 1831.
    6. Morrison, B. M., Jr.; Heicklen, J. J. Photochem. 1981, 15, 131.
    7. Pollard, F. H.; Wyatt, R. M. H. Trans. Faraday Soc. 1949, 45, 760.
    8. Timonen, R. S.; Ratajczak, E. and Gutaman, D. J. Phys. Chem. 1988, 92, 651.
    9. Thomas, J. H. Trans. Faraday Soc. 1953, 49, 630.
    10. Gray, P. Trans. Faraday Soc. 1955, 51, 1367.
    11. (a)Audley, G. J.; Baulch, D. L.; Campbell, I. M. J. Chem. Soc. Faraday Trans. I 1984, 80, 599.(b) Baulch, D. L.; Campbell, I. M.; Chappel, J. M. J. Chem. Soc. Faraday Trans. I 1984, 80, 609.
    12. (a)Slagle, I. R.; Gutman, D. J. Am. Chem. Soc. 1982, 104, 4741.(b) Caulley, J. M.; Anderson, S. M.; Jeffries, J. B.; Kaufman, F. Chem. Phys. Lett. 1985, 115, 180.
    13. (a)Langford, A. O.; Moore, C. B. J. Chem. Phys. 1984, 80, 4204.(b) Langford, A. O.; Moore, C. B. J. Chem. Phys. 1984, 80, 4211.
    14. (a) Tso, T. –L.; Diem, M.; Lee, E. K. C. Chem. Phys. Lett. 1982, 91, 339.(b) Tso, T. –L.; Diem, M.; Lee, E. K. C. Chem. Phys. Lett. 1984, 88, 5465. (c) Tso, T. –L.; Diem, M.; Lee, E. K. C. Chem. Phys. Lett. 1984, 88, 5475.
    15. Hamann, H. C.; Swern, D. Tetrahedron Lett. 1966, 28, 3303.
    16. Hamann, H. C.; Swern, D. J. Am. Chem. Soc. 1968, 6, 6481.
    17. Guo, Y.; Smith, S. C.; Moore, C. B.; Melius, C. F. J. Phys. Chem. 1995, 99, 7473.
    18. Rim, K. T.; Hershberger, J. F. J. Phys. Chem. 1998, 102, 5898.
    19. Turi, L.; Dannenberg, J.J.; Rama, J.; Vertura, O. N. J. Phys. Chem. 1992, 96, 3709.
    20. Wiberg, K. B.; Laidig, K. E. J. Am. Chem. Soc. 1987, 109, 5935.
    21. Blom, C. E.; Gunthard, Hs. H. Chem. Phys. Lett. 1981, 84, 267.
    §4-5. 參考文獻
    1. Morris, E. D., Jr.; Niki, H. J. Phys. Chem. 1974, 78, 1337.
    2. Louw, R.; Van Ham, J.; Nieboer, H. J. Air Pollute. Contr. Ass., 1973, 23, 716.
    3. Lin, C. –Y.; Wang, H. T.; Lin, M. C.; Melius, C. F. Int. J. Chem. Kinet. 1990, 22, 455.
    4. He, Y.; Kolby, E.; Shumaker, P.; Lin, M. C. Int. J. Chem. Kinet. 1989, 21, 1015.
    5. Calvert, J. G.; Lazrus, A,; Kok, G. L.; Heikes, B. G.; Walega, J. G.; Lind, J.; Cantrell, C. A. Nature, 1985, 317, 27.
    6. Calvert, J. G.; Stockwell, W. R. Environ. Sci. Technol. 1983, 17, 428.
    §5-5. 參考文獻
    1. Leighton, P. A. “Photochemistry of Air Pollution”, Academic Press, New York, N. Y., 1961.
    2. Niki, H.; Daby, E. E.; Weinstock, B. Advan. Chem. Ser. 1972, 113, 16.
    3. Cadle, R. D.; Schadt, C. J. Amer. Chem. Soc., 1952, 74, 6002.
    4. Hanst, P. L.; Stephens, E. R.; Scott, W. E.; Doerr, R. C. “Atmospheric Ozone-Olefine Reactions,” The Franklin Instute, Philadelphia, Pa., 1958.
    5. Stedman, D. H.; Wu, C. H.; Niki, H. J. Phys. Chem. 1973, 77, 2511.
    6. Lee, Y. Y.; Lee, Y. P.; Wang, N. S. J. Chem. Phys. 1994, 100, 387.
    7. Schonle, G.; Rahman, M. M.; Schindler, R. N. Ber. Bunsenges. Phys. Chem. 1987, 91, 66.
    8. Leu, M. T.; Smith, R. H. J. Phys. Chem. 1982, 86, 73.
    9. Leu, M. T.; Smith, R. H. J. Phys. Chem. 1981, 85, 2570.

    無法下載圖示
    QR CODE