研究生: |
廖柏茵 Liao, Po-Yin |
---|---|
論文名稱: |
台灣期貨市場頻繁交易人對市場流動性及報酬率之影響 The Effect of Frequent Traders on Market Liquidity and Returns in Taiwan Futures Market |
指導教授: |
蔡蒔銓
Tsai, Shih-Chuan |
學位類別: |
碩士 Master |
系所名稱: |
管理研究所 Graduate Institute of Management |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 54 |
中文關鍵詞: | 頻繁交易 、流動性 、報酬率 、委託不均衡 、Tobit模型 、VAR向量自我迴歸模型 |
英文關鍵詞: | Frequent trader, Liquidity, Return Rate, Order Imbalance, Tobit model, VAR model |
DOI URL: | https://doi.org/10.6345/NTNU202205080 |
論文種類: | 學術論文 |
相關次數: | 點閱:305 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要目的是為台灣期貨市場提出二種區分頻繁交易者的指標,其一為高刪改單量比率,其二為高委託次數者,以此探討期貨市場中頻繁與非頻繁交易投資人對市場流動性與報酬率之影響。我們以台灣期貨市場的台指期貨及小型台指期貨為研究標的,分別自各市場參與人中篩選出兩種頻繁交易人並將他們的委託單排除後算出委託不均衡,將其結果減去完整市場的委託不均衡,得到無頻繁交易者委託單時的市場委託不均衡與完整委託單下市場委託不均衡的差異,以此觀察頻繁交易者對市場流動性的貢獻情形。本文根據文獻回顧,將交易量、報酬率與波動度作為自變數,前述流動性貢獻作為因變數,以Tobit Model檢視它們之間的關係。結果驗證了屬於資訊擁有者的頻繁交易人是市場流動性的供給者,而非頻繁交易者則為市場流動性的需求者。其次,本研究欲探討頻繁交易者委託不均衡與市場報酬率、市場委託不均衡之間的時間序列關係,將各變數落後一至二分鐘之落後期數值與代表不同交易時段的虛擬變數納入VAR迴歸模型中,觀察兩兩間是否存在領先落後關係。檢驗結果顯示頻繁交易者的委託單不均衡與其落後期有顯著相關性,顯示頻繁交易人會依據前期下單決策調整當期下單方向;市場委託不均衡與頻繁交易者的委託不均衡間則無顯著領先落後關係。
The study aims to create indexes to indicate two groups of frequent traders in Taiwan futures exchange market. One is by observing order revision of each account, another is by order frequency. By separating frequent traders from the majority non-frequent traders, we are able to analyze their contributions to market liquidity and returns. The research is focusing on Taiwan Stock Index Futures and Mini-Taiwan Stock Index Futures. Due to the fact that they are the most frequently traded products and the most discussible subjects in both empirical and academic research of Taiwan futures exchange market.
We take order imbalance as the index of market liquidity. In order to measure the contribution of frequent traders to market liquidity, we calculate the market order imbalance of each product; then we calculate the order imbalance without orders made by the frequent traders; finally, we acquire a new index measuring the liquidity contribution of each trader group by subtracting the former from the latter. Base on the discovery of previous studies, trading volume, return rate and validity have influence on liquidity. Our study extends the observations by implying the three variables as independent variables and the liquidity contributions of frequent traders as dependent variable into TOBIT model. To examine if the correlation exists in the orders of frequent traders. The regression analysis confirms that frequent traders are the suppliers of market liquidity while non-frequent traders are the demanders. Finally, we also examine order imbalances of the two frequent trader groups and their relationships with market order imbalance and market return while taking each of their lag values into account. We do a sequence of time-series analysis by using VAR model. The results show that order imbalance of frequent traders has significant relationship with its lag values which implies frequent traders tend to make orders base on their previous order strategies. Meanwhile, there’s neither significant relation between order imbalance of frequent traders and market order imbalance nor significant relation with the lag values of market order imbalance.
1. 蔡垂君,2003,「台灣股價指數期貨與現貨之實證研究」,國立台北大學企業管理學系碩士論文。
2. Aitken, M., &Comerton-Forde, C. (2003). How should liquidity be measured?.Pacific-Basin Finance Journal, 11(1), 45-59.
3. Amihud, Y., & Mendelson, H. (1986). Asset pricing and the bid-ask spread.Journal of financial Economics, 17(2), 223-249.
4. Amihud, Y., & Mendelson, H. (1989). The effects of computer based trading on volatility and liquidity. The Challenge of Information Technology for the Securities Markets: Liquidity, Volatility, and Global Trading. Dow Jones-Irwin, Homewood, Illinois
5. Amihud, Y. (2002). Illiquidity and stock returns: Cross-section and time-series effects. Journal of Financial Markets, 5(1), 31-56.
6. Anand, A., Chakravarty, S., & Martell, T. (2005). Empirical evidence on the evolution of liquidity: Choice of market versus limit orders by informed and uninformed traders. Journal of Financial Markets, 8(3), 288-308.
7. Allen Carrion (2013). Very fast money: high-frequency trading on the NASDAQ. Journal of Financial Markets, 680-711
8. Bortoli, L., Frino, A., Jarnecic, E., & Johnstone, D. (2006). Limit order book transparency, execution risk, and market liquidity: Evidence from the Sydney Futures Exchange. Journal of Futures Markets, 26(12), 1147-1167.
9. Brennan, M. J., Chordia, T., &Subrahmanyam, A. (1998). Alternative factor specifications, security characteristics, and the cross-section of expected stock returns. Journal of Financial Economics, 49(3), 345-373.
10. Brorsen, B. W. (1989). Liquidity costs and scalping returns in the corn futures market. Journal of Futures Markets, 9(3), 225-236.
11. Cao, Charles, Oliver Hansch, and Xiaoxin Wang. (2009). The information content of an open limit‐order book. Journal of futures markets 29(1), 16-41.
12. Carrion, A. (2013). Very fast money: High-frequency trading on the NASDAQ.Journal of Financial Markets, 16(4), 680-711.
13. Chordia, T., Roll, R., &Subrahmanyam, A. (2001). Market liquidity and trading activity.Journal of Finance, 56(2), 501-530.
14. Chordia, T., Roll, R., &Subrahmanyam, A. (2002). Order imbalance, liquidity, and market returns. Journal of Financial Economics, 65(1), 111-130.
15. Chordia, T., Roll, R., &Subrahmanyam, A. (2008). Liquidity and market efficiency. Journal of Financial Economics, 87(2), 249-268.
16. Chung, J. M., Choe, H., & Kho, B. C. (2009). The impact of day‐trading on volatility and liquidity. Asia‐Pacific Journal of Financial Studies, 38(2), 237-275.
17. Cornett, M. M., Schwarz, T. V., &Szakmary, A. C. (1995). Seasonalities and intraday returnpatterns in the foreign currency futures market. Journal of Banking & Finance, 19(5), 843-869.
18. Daigler, R. T., & Wiley, M. K. (1999). The impact of trader type on the futures volatility‐volume relation. Journal of Finance, 54(6), 2297-2316.
19. Demsetz, H. (1968). The cost of transacting. The quarterly journal of economics, 33-53.
20. Edwards, F. R. (1988). Does futures trading increase stock market volatility?.Financial Analysts Journal, 44(1), 63-69.
21. Foucault, T., Kadan, O., &Kandel, E. (2005). Limit order book as a market for liquidity. Review of Financial Studies, 18(4), 1171-1217.
22. Granger, C. W., & Newbold, P. (1974). Spurious regressions in econometrics.Journal of econometrics, 2(2), 111-120.
23. Grossman, S. J. (1988). Program trading and market volatility: A report on interdayrelationships. Financial Analysts Journal, 18-28.
24. Hameed, A., Kang, W., &Viswanathan, S. (2010). Stock market declines and liquidity. Journal of Finance, 65(1), 257-293.
25. Harris, L. (1986). A transaction data study of weekly and intradaily patterns in stock returns. Journal of Financial Economics, 16(1), 99-117.
26. Harris, L., Sofianos, G., & Shapiro, J. E. (1994). Program trading and intraday volatility. Review of Financial Studies, 7(4), 653-685.
27. Hasbrouck, J. (2004). Liquidity in the futures pits: Inferring market dynamics from incomplete data. Journal of Financial and Quantitative Analysis, 39(02), 305-326.
28. Hendershott, Terrence, Charles M. Jones, and Albert J. Menkveld.(2011). Does algorithmic trading improve liquidity?. The Journal of Finance 66(1), 1-33.
29. Huang, J., & Wang, J. (2009). Liquidity and market crashes. Review of Financial Studies, 22(7), 2607-2643.
30. J. Brogaard, T. Hendershott&R. Riordan. (2014). High-Frequency Trading and Price Discovery. Review of Financial Studies, 2267-2306.
31. J Hasbrouck, G Saar. (2013). Low-latency trading. Journal of Financial Markets. 646-679.
32. Kirilenko, A. A., Kyle, A. S., Samadi, M., & Tuzun, T. (2015). The flash crash: The impact of high frequency trading on an electronic market.Available at SSRN 1686004.
33. Locke, P. R., & Sarkar, A. (2001). Liquidity supply and volatility: Futures market evidence. Journal of Futures Markets, 21(1), 1-17.
34. Menkveld, A. J., &Jovanovic, B. (2010). Middlemen in Limit Order Markets.In2010 Meeting Papers (No. 955). Society for Economic Dynamics.
35. McInish, T. H., & Wood, R. A. (1992). An analysis of intraday patterns in bid/ask spreads for NYSE stocks.Journal of Finance, 47(2), 753-764.
36. O'Hara, M. (2003). Presidential address: Liquidity and price discovery. The Journal of Finance, 58(4), 1335-1354.
37. Pastor, L., &Stambaugh, R. F. (2001). Liquidity risk and expected stock returns (No. w8462). National Bureau of Economic Research.
38. Puri, T. N., &Philippatos, G. C. (2008). Asymmetric Volume‐Return Relation and Concentrated Trading in LIFFE Futures. European Financial Management, 14(3), 528-563.
39. Roll, R. (1984). A simple implicit measure of the effective bid‐ask spread in an efficient market. Journal of Finance, 39(4), 1127-1139.
40. Samuelson, P. A. (1965). Proof that properly anticipated prices fluctuate randomly. Industrial management review, 6(2), 41-49.
41. Sarr, A., &Lybek, T. (2002). Measuring liquidity in financial markets. IMF Working paper.
42. Securities and Exchange Commission. (2010). Concept release on equity market structure. Federal Register, 75(13), 3594-3614.
43. Shalen, C. T. (1993). Volume, volatility, and the dispersion of beliefs. Review of Financial Studies, 6(2), 405-434.
44. Sims, C. A. (1980). Macroeconomics and reality. Econometrica: Journal of the Econometric Society, 1-48.
45. Tian, G. G., &Guo, M. (2007). Interday and intraday volatility: Additional evidence from the Shanghai Stock Exchange. Review of Quantitative Finance and Accounting, 28(3), 287-306.
46. Wang, G. H., Michalski, R. J., Jordan, J. V., & Moriarty, E. J. (1994). An intraday analysis of Bid‐Ask spreads and price volatility in the S&P 500 index futures market. Journal of Futures Markets, 14(7), 837-859.
47. Zhang, F. (2010). High-frequency trading, stock volatility, and price discovery. Available at SSRN 1691679.
48. Zhou, B. (1996). High-frequency data and volatility in foreign-exchange rates.Journal of Business & Economic Statistics, 14(1), 45-52.