研究生: |
郭長祐 |
---|---|
論文名稱: |
鈷在矽(111)-7×7與鈷在(√3×√3)-Ag/Si(111)表面隨溫度變化之行為研究 The change of behavior with temperature of Co on Si(111)-7×7 and Co on(√3×√3)Ag/Si(111)surface |
指導教授: |
傅祖怡
Fu, Tsu-Yi |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 55 |
中文關鍵詞: | 矽 、鈷 、銀 、溫度 、表面 、變化 |
論文種類: | 學術論文 |
相關次數: | 點閱:271 下載:4 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
室溫下的鈷會與矽發生電子轉換的反應,而使得矽(111)-(7×7)的adatom從原本在掃描穿隧顯微鏡(STM)下的亮點轉而成為暗點,經由統計發現鈷所造成的電子態轉換集中在(7×7)重構中未堆疊錯誤半單位晶格的中間位置的adatom上。
我們利用可變溫的掃描穿隧顯微鏡(VT-STM),在不同的低溫下觀察鈷在矽表面的行為。經由實驗與統計,我們發現鈷在100K的溫度下不會與矽基底發生電子的轉換。再接下來的變溫實驗裡,我們成功的找出鈷在矽表面發生電子轉換的臨界溫度為126K ~ 130K之間。我們並推測,在較高溫度時鈷原子會有擴散的行為,擴散到(7×7)重構中未堆疊錯誤半單位晶格的中間位置並與adatom發生反應。
在鈷蒸鍍在(√3×√3)銀/矽(111)的系統裡,我們發現室溫下的鈷是單純且均勻的吸附在銀/矽的表面上,並沒有對銀/矽的表面產生任何的變化。我們將溫度升高至100、200、300、400及500℃後,再進行STM的觀察。觀察後發現,溫度升高至200℃之後,鈷的原子團開始發生聚集。隨著溫度的增加,鈷原子的聚集現象越明顯,而且有向√3島的邊緣聚集的趨勢,但我們仍然沒有發現鈷原子對於銀/矽的基底造成其它的影響。因此我們知道,單層的銀原子就可以有效的阻止鈷與矽產生電子的轉換。
Cobalt atoms can react with the adatoms of Si(111)-7×7 surfaces at the room temperature. The reaction transfers the electric state of Si adatoms. The bright dots change to dark dots under the scanning tunneling microscopy(STM) observation of negative bias. By the statistic method, we find the most of dark dots appear at unfaulted half unit cell(UHUC)center sites.
The behavior of Co/Si(111)-7×7 system are observed at low temperatures by using a variable temperature STM. At 100K, we find that Co atoms will not react with silicon but randomly adsorb on the surfaces. As the temperature increasing, the critical temperature of the reaction among 126K and 130K are found by STM observations. We suppose that the Co atoms will diffuse and react with Si(111)-7×7 UHUC center site at higher temperatures.
Co atoms which are deposited on the( × )-Ag/Si(111)surfaces are simply adsorbed on the surfaces without other reactions. The behaviors of Co atoms at the temperature of 100, 200, 300, 400 and 500℃ are observed by STM. As the temperature rising, the Co atoms congregate as islands, and the islands prefer to condense on the edges of islands. Besides, no any evidence shows the Co atoms react with the Si substrate. As the result we conclude that the ( × )-Ag buffer layer on Si(111)surface can effectively prevent the reaction between Co and Si atoms.
1.G. Rangelov, P. Augustin, J. Stober, and Th. Fauster, Phys. Rev. B 49, 7535(1994).
2.A. Bensaoula, J.Y. Veuillen, T.A. Nguyen Tan, Surf. Sci. 241 425(1991).
3.A.E. Dolbak, B.Z. Olshanetsky, S.A. Teys, Surf. Sci. 373 43(1997).
4.J.Y. Veuillen, J. Derrien, P.A. Badoz, E. Rosencher, and C. d’Anterroches, Appl. Phys. Lett. 51, 18(1987).
5.A. Seubert, J. Schardt, W. Weiβ, U. Starke, K. Heinz, and Th. Fauster, Appl. Phys. Lett. 76, 6(2000).
6.張金群, 國立台灣師範大學碩士論文(2004).
7.Ing-Shouh Hwang, Mon-Shu Ho, Tien-Tzou Tsong, Surf. Sci. 514 309(2002).
8.P. Sutter, P. Zahl, E. Sutter, and J.E. Bernard, Phys. Rev. Lett. 90 166101 (2003).
9.真空技術與應用, 行政院國家科學委員會精密儀器發展中心(2001).
10.表面分析儀器, 行政院國家科學委員會精密儀器發展中心(1998).
11.基本物理量量測儀器, 行政院國家科學委員會精密儀器發展中心(1998).
12.R. Wolkow and Ph. Avouris, Phys. Rev. Lett. 60 1049(1988).
13.J.F. Jia, R.G. Zhao, and W.S. Yang, Phys. Rev. B 48 18109(1993).
14.Ph. Guaino, A.A. Cafolla, D. Carty, G Sheerin, and G. Hughes, Surf. Sci. 540 107(2003).
15.G. Raynerd, M. Hardiman, and J.A. Venables, Phys. Rev. B 44 13803(1991).
16.林敏華, 國立台灣師範大學碩士論文(2003).
17.高執貴, 國立台灣師範大學碩士論文(2004).
18.林俊良, 國立台灣師範大學碩士論文(2005).
19.K.J. Wan, X.F. Lin, and J. Nogami, Phys. Rev. B 47 13700(1993).
20.P.A. Sloan, M.F.G. Hedouin, and R.E. Palmer, Phys. Rev. Lett. 91 118301(2003).