簡易檢索 / 詳目顯示

研究生: 陳執中
Zhi-Zhong Chen
論文名稱: 評估海藻糖對第十七型脊髓小腦萎縮症小鼠及組織切片培養之作用
Evaluation of the efficacy of trehalose through the mouse cerebellar organotypic slice culture and SCA17 transgenic mice
指導教授: 謝秀梅
Hsieh, Hsiu-Mei
學位類別: 碩士
Master
系所名稱: 生命科學系
Department of Life Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 61
中文關鍵詞: 神經退化性疾病脊髓小腦萎縮症海藻糖柏金氏細胞
英文關鍵詞: neurodegenerative diseases, spinocerebellar ataxia, trehalose, purkinje cell
論文種類: 學術論文
相關次數: 點閱:207下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脊髓小腦萎縮症 (Spinocerebellar ataxia, SCA) 是一種體染色體顯性的遺傳性疾病,患有 SCA 的患者會因為小腦和脊髓的神經細胞發生退化,而導致病人有運動失調等症狀出現。現在已知導致 SCA 的原因多半是因特定基因某些重複核苷片段過度擴增所致。SCA17 是眾多 SCA 的其中一亞型,研究發現導致 SCA17發病的原因為染色體 6q27 位置上的 TATA-Box Binding Protein (TBP) 基因CAG 過度擴增,而導致 TBP N-terminal的Polyglutamine (polyQ) 過長,使得 TBP 在細胞內形成不溶性的聚集物 (detergent-insoluble aggregate),令神經細胞功能異常而退化,然而 SCA17 的整體病理路徑至今仍未十分清楚。小腦組織切片培養 (Cerebellar organotyptic culture) 是一種可以觀察小腦神經細胞發育、神經細胞排列狀況以及神經細胞存活率的有效平台。由於SCA17的病人多在中年後發病,但神經細胞退化的情形在明顯的外顯病徵前就已經開始進行,因此我們試圖以 SCA17 基因轉殖小鼠之小腦組織切片培養作為一分析平台,利用此模式可直接觀察在 SCA1 7發病前神經細胞的發展,除了可進一步了解 SCA17 的致病成因外,並可作為藥物測試之初步模式。海藻糖被報導出在許多疾病中具有預防蛋白質降解和防止蛋白質聚集 (aggregation) 的情形,例如阿茲海默氏症 (Alzheimer’s disease, AD) 杭丁頓氏舞蹈症 (Huntington’s diseases, HD),脊髓小腦萎縮症第十四型 (SCA 14) 和其他的poly Q 神經退化性疾病。在本研究中,我們運用小腦組織切片培養來評估海藻糖對於 SCA17 的治療效果。我們的結果顯示出 TBP aggregation 會在小腦組織切片培養中的 Purkinje cell 中在體外培養第三天 (DIV3 )發生,而聚集的情形會在 SCA17 的 DIV7 小腦組織切片培養中越來越明顯。然而,我們發現在加入海藻糖後,TBP aggregation的情形有明顯下降的現象。為了要了解海藻糖在體內的治療效果,我們將海藻糖加入 SCA17 基因轉殖小鼠的飲用水中,並藉由行為實驗和病理分析來了解海藻糖對於 SCA17的療效。結果發現,飲用有加入海藻糖的 SCA17 基因轉殖小鼠,其 rota-rod 的平衡能力,footprint的檢測實驗都有顯著回復的情形,而且飲用有加入海藻飲用水的基因轉殖小鼠,其神經膠細胞的發炎反應亦有回復的情形。綜合上述結果,顯示海藻糖應該是一對於 SCA17 具有療效的潛力藥物。

    Spinocerebellar ataxia (SCA) is an autosomal dominant and progressive neurodegenerative disease chartered by ataxia, parkinsonism, dementia and seizures. Although there remains lots unclarified mechanism in SCA17, it is believed that the mutation on the TATA box binding protein (TBP) is responsible for the disease. The CAG repeat expansion of TBP gene leads to the reduced solubility of polyglutamine (polyQ) TBP and induces aggregate formation. For TBP plays an important role in transcription initiation, the abnormal aggregate is believed to cause neuron degeneration especially in the cerebellar Purkinje cells. Cerebellar organotypic culture is a system which could provide research evidence on tissue level. In addition, the cerebellar organotypic culture could provide the normal interaction between Purkinje cells and the other cells in vitro. We have established this system to study and monitor the cerebellar cell development, neuron survival, Purkinje cell aggregate forming and death and for a drug screening platform. Trehalose is reported to prevent protein degradation and aggregate formation in several disease models, including Huntington’s diseases, Alzheimer's disease, SCA14 and some other neurodegenerative diseases caused by polyQ expansion. In this study, we evaluated the therapeutic effect of trehalose using SCA17 cerebellar organotypic culture system. Our results showed that TBP aggregation formed in the Purkinje cells at in vitro day 3 (DIV3) and became more obvious at DIV7 in the SCA17 cerebellar slice culture. Furthermore, we found that the TBP aggregation significant decreased in our slice culture at DIV7 after treatment with trehalose. To identify the effect of trehalose in vivo, trehalose supplied in the drinking water of SCA17 transgenic mice was conducted. In the behavior test, we found that mice drinking trehalose ameliorated their hyperactivity and improved their coordination in rotarod test. Furthermore, we confirmed that the calbindin expression level was upregulated in the trehalose treatment mouse cerebellum. In addition, the cerebellum size in trehalose treatment mouse is bigger than that of vehicle treatment mouse. In our 4% trehalose treatment study, we found the gait behavior and motor coordination of SCA17 mice were rescued in the footprint and rotarod task, respectively. We also could observe the astrocyte gliosis performance was downregulated after trehalose treatment. However, the microglia cell was activated especially in transgenic trehalose treatment group. Furthermore, the MnSOD was also upregulated after trehalose treatment. These data suggest that trehalose could be a potential non-toxic treatment for SCA17.

    Abstract page 1 Introduction page3 Material and Method page 10 Results page 19 Discussion page 27 Reference page 33 Appendix page 43

    Aguib Y, Heiseke A, Gilch S, Riemer C, Baier M, Schatzl HM, Ertmer A (2009) Autophagy induction by trehalose counteracts cellular prion infection. Autophagy 5:361-369.
    Bence NF, Sampat RM, Kopito RR (2001) Impairment of the ubiquitin-proteasome system by protein aggregation. Science 292:1552-1555.
    Beranger F, Crozet C, Goldsborough A, Lehmann S (2008) Trehalose impairs aggregation of PrPSc molecules and protects prion-infected cells against oxidative damage. Biochemical and biophysical research communications 374:44-48.
    Bergold PJ, Casaccia-Bonnefil P (1997) Preparation of organotypic hippocampal slice cultures using the membrane filter method. Methods Mol Biol 72:15-22.
    Birgbauer E, Rao TS, Webb M (2004) Lysolecithin induces demyelination in vitro in a cerebellar slice culture system. Journal of neuroscience research 78:157-166.
    Chang YC, Lin CY, Hsu CM, Lin HC, Chen YH, Lee-Chen GJ, Su MT, Ro LS, Chen CM, Hsieh-Li HM (2011) Neuroprotective effects of granulocyte-colony stimulating factor in a novel transgenic mouse model of SCA17. Journal of neurochemistry 118:288-303.
    Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK (1992) Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 149:2736-2741.
    Chen Q, Haddad GG (2004) Role of trehalose phosphate synthase and trehalose during hypoxia: from flies to mammals. The Journal of experimental biology 207:3125-3129.
    Collin L, Usiello A, Erbs E, Mathis C, Borrelli E (2004) Motor training compensates for cerebellar dysfunctions caused by oligodendrocyte ablation. Proceedings of the National Academy of Sciences of the United States of America 101:325-330.
    Davids E, Hevers W, Damgen K, Zhang K, Tarazi FI, Luddens H (2002) Organotypic rat cerebellar slice culture as a model to analyze the molecular pharmacology of GABAA receptors. European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology 12:201-208.
    Doretto S, Malerba M, Ramos M, Ikrar T, Kinoshita C, De Mei C, Tirotta E, Xu X, Borrelli E (2011) Oligodendrocytes as regulators of neuronal networks during early postnatal development. PloS one 6:e19849.
    Dusart I, Airaksinen MS, Sotelo C (1997) Purkinje cell survival and axonal regeneration are age dependent: an in vitro study. The Journal of neuroscience : the official journal of the Society for Neuroscience 17:3710-3726.
    Elkabes S, DiCicco-Bloom EM, Black IB (1996) Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. The Journal of neuroscience : the official journal of the Society for Neuroscience 16:2508-2521.
    Friedman MJ, Shah AG, Fang ZH, Ward EG, Warren ST, Li S, Li XJ (2007) Polyglutamine domain modulates the TBP-TFIIB interaction: implications for its normal function and neurodegeneration. Nature neuroscience 10:1519-1528.
    Fujigasaki H, Martin JJ, De Deyn PP, Camuzat A, Deffond D, Stevanin G, Dermaut B, Van Broeckhoven C, Durr A, Brice A (2001) CAG repeat expansion in the TATA box-binding protein gene causes autosomal dominant cerebellar ataxia. Brain : a journal of neurology 124:1939-1947.
    Gahwiler BH (1981) Morphological differentiation of nerve cells in thin organotypic cultures derived from rat hippocampus and cerebellum. Proc R Soc Lond B Biol Sci 211:287-290.
    Gahwiler BH (1981) Organotypic monolayer cultures of nervous tissue. Journal of neuroscience methods 4:329-342.
    Ghoumari AM, Wehrle R, Bernard O, Sotelo C, Dusart I (2000) Implication of Bcl-2 and Caspase-3 in age-related Purkinje cell death in murine organotypic culture: an in vitro model to study apoptosis. The European journal of neuroscience 12:2935-2949.
    Gill G, Tjian R (1992) Eukaryotic coactivators associated with the TATA box binding protein. Current opinion in genetics & development 2:236-242.
    Gostout B, Liu Q, Sommer SS (1993) "Cryptic" repeating triplets of purines and pyrimidines (cRRY(i)) are frequent and polymorphic: analysis of coding cRRY(i) in the proopiomelanocortin (POMC) and TATA-binding protein (TBP) genes. American journal of human genetics 52:1182-1190.
    Grosche J, Matyash V, Moller T, Verkhratsky A, Reichenbach A, Kettenmann H (1999) Microdomains for neuron-glia interaction: parallel fiber signaling to Bergmann glial cells. Nature neuroscience 2:139-143.
    Hamers FP, Lankhorst AJ, van Laar TJ, Veldhuis WB, Gispen WH (2001) Automated quantitative gait analysis during overground locomotion in the rat: its application to spinal cord contusion and transection injuries. Journal of neurotrauma 18:187-201.
    Hill KE, Clawson SA, Rose JW, Carlson NG, Greenlee JE (2009) Cerebellar Purkinje cells incorporate immunoglobulins and immunotoxins in vitro: implications for human neurological disease and immunotherapeutics. Journal of neuroinflammation 6:31.
    Huang S, Ling JJ, Yang S, Li XJ, Li S (2011) Neuronal expression of TATA box-binding protein containing expanded polyglutamine in knock-in mice reduces chaperone protein response by impairing the function of nuclear factor-Y transcription factor. Brain : a journal of neurology 134:1943-1958.
    Jaeger CB, Kapoor R, Llinas R (1988) Cytology and organization of rat cerebellar organ cultures. Neuroscience 26:509-538.
    Koide R, Kobayashi S, Shimohata T, Ikeuchi T, Maruyama M, Saito M, Yamada M, Takahashi H, Tsuji S (1999) A neurological disease caused by an expanded CAG trinucleotide repeat in the TATA-binding protein gene: a new polyglutamine disease? Human molecular genetics 8:2047-2053.
    Krassioukov AV, Ackery A, Schwartz G, Adamchik Y, Liu Y, Fehlings MG (2002) An in vitro model of neurotrauma in organotypic spinal cord cultures from adult mice. Brain research Brain research protocols 10:60-68.
    Kruger U, Wang Y, Kumar S, Mandelkow EM (2011) Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiology of aging.
    Lehrmann E, Kiefer R, Christensen T, Toyka KV, Zimmer J, Diemer NH, Hartung HP, Finsen B (1998) Microglia and macrophages are major sources of locally produced transforming growth factor-beta1 after transient middle cerebral artery occlusion in rats. Glia 24:437-448.
    Li L, Lu J, Tay SS, Moochhala SM, He BP (2007) The function of microglia, either neuroprotection or neurotoxicity, is determined by the equilibrium among factors released from activated microglia in vitro. Brain research 1159:8-17.
    Lin MT, Beal MF (2006) Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 443:787-795.
    Lin SC, Huck JH, Roberts JD, Macklin WB, Somogyi P, Bergles DE (2005) Climbing fiber innervation of NG2-expressing glia in the mammalian cerebellum. Neuron 46:773-785.
    Lippman JJ, Lordkipanidze T, Buell ME, Yoon SO, Dunaevsky A (2008) Morphogenesis and regulation of Bergmann glial processes during Purkinje cell dendritic spine ensheathment and synaptogenesis. Glia 56:1463-1477.
    Lopez M, Tejera NA, Lluch C (2009) Validamycin A improves the response of Medicago truncatula plants to salt stress by inducing trehalose accumulation in the root nodules. Journal of plant physiology 166:1218-1222.
    Lordkipanidze T, Dunaevsky A (2005) Purkinje cell dendrites grow in alignment with Bergmann glia. Glia 51:229-234.
    Lu HX, Levis H, Liu Y, Parker T (2011) Organotypic slices culture model for cerebellar ataxia: potential use to study Purkinje cell induction from neural stem cells. Brain research bulletin 84:169-173.
    Mathis C, Collin L, Borrelli E (2003) Oligodendrocyte ablation impairs cerebellum development. Development 130:4709-4718.
    Meng W, Kallinteri P, Walker DA, Parker TL, Garnett MC (2007) Evaluation of poly (glycerol-adipate) nanoparticle uptake in an in vitro 3-D brain tumor co-culture model. Exp Biol Med (Maywood) 232:1100-1108.
    Montero M, Gonzalez B, Zimmer J (2009) Immunotoxic depletion of microglia in mouse hippocampal slice cultures enhances ischemia-like neurodegeneration. Brain research 1291:140-152.
    Mulholland PJ, Self RL, Stepanyan TD, Little HJ, Littleton JM, Prendergast MA (2005) Thiamine deficiency in the pathogenesis of chronic ethanol-associated cerebellar damage in vitro. Neuroscience 135:1129-1139.
    Nagai Y, Popiel HA, Fujikake N, Toda T (2007) [Therapeutic strategies for the polyglutamine diseases]. Brain and nerve = Shinkei kenkyu no shinpo 59:393-404.
    Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, Ikeda S, Tsuji S, Kanazawa I (2001) SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Human molecular genetics 10:1441-1448.
    Newell DW, Barth A, Malouf AT (1995) Glycine site NMDA receptor antagonists provide protection against ischemia-induced neuronal damage in hippocampal slice cultures. Brain research 675:38-44.
    Okazawa H (2003) Polyglutamine diseases: a transcription disorder? Cellular and molecular life sciences : CMLS 60:1427-1439.
    Orr HT, Zoghbi HY (2000) Reversing neurodegeneration: a promise unfolds. Cell 101:1-4.
    Ostergaard K, Finsen B, Zimmer J (1995) Organotypic slice cultures of the rat striatum: an immunocytochemical, histochemical and in situ hybridization study of somatostatin, neuropeptide Y, nicotinamide adenine dinucleotide phosphate-diaphorase, and enkephalin. Experimental brain research Experimentelle Hirnforschung Experimentation cerebrale 103:70-84.
    Ostergaard K, Schou JP, Zimmer J (1990) Rat ventral mesencephalon grown as organotypic slice cultures and co-cultured with striatum, hippocampus, and cerebellum. Experimental brain research Experimentelle Hirnforschung Experimentation cerebrale 82:547-565.
    Piani D, Spranger M, Frei K, Schaffner A, Fontana A (1992) Macrophage-induced cytotoxicity of N-methyl-D-aspartate receptor positive neurons involves excitatory amino acids rather than reactive oxygen intermediates and cytokines. European journal of immunology 22:2429-2436.
    Raspe M, Gillis J, Krol H, Krom S, Bosch K, van Veen H, Reits E (2009) Mimicking proteasomal release of polyglutamine peptides initiates aggregation and toxicity. Journal of cell science 122:3262-3271.
    Rytter A, Cronberg T, Asztely F, Nemali S, Wieloch T (2003) Mouse hippocampal organotypic tissue cultures exposed to in vitro "ischemia" show selective and delayed CA1 damage that is aggravated by glucose. Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism 23:23-33.
    Sakai N, Saito N, Seki T (2011) Molecular pathophysiology of neurodegenerative disease caused by gammaPKC mutations. The world journal of biological psychiatry : the official journal of the World Federation of Societies of Biological Psychiatry 12 Suppl 1:95-98.
    Schaffar G, Breuer P, Boteva R, Behrends C, Tzvetkov N, Strippel N, Sakahira H, Siegers K, Hayer-Hartl M, Hartl FU (2004) Cellular toxicity of polyglutamine expansion proteins: mechanism of transcription factor deactivation. Molecular cell 15:95-105.
    Schelhaas HJ, Ippel PF, Beemer FA, Hageman G (2000) Similarities and differences in the phenotype, genotype and pathogenesis of different spinocerebellar ataxias. European journal of neurology : the official journal of the European Federation of Neurological Societies 7:309-314.
    Seki T, Abe-Seki N, Kikawada T, Takahashi H, Yamamoto K, Adachi N, Tanaka S, Hide I, Saito N, Sakai N (2010) Effect of trehalose on the properties of mutant {gamma}PKC, which causes spinocerebellar ataxia type 14, in neuronal cell lines and cultured Purkinje cells. The Journal of biological chemistry 285:33252-33264.
    Spacek J (1985) Three-dimensional analysis of dendritic spines. III. Glial sheath. Anatomy and embryology 171:245-252.
    Stoppini L, Buchs PA, Muller D (1991) A simple method for organotypic cultures of nervous tissue. Journal of neuroscience methods 37:173-182.
    Tanaka M, Machida Y, Niu S, Ikeda T, Jana NR, Doi H, Kurosawa M, Nekooki M, Nukina N (2004) Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nature medicine 10:148-154.
    Vig PJ, Shao Q, Subramony SH, Lopez ME, Safaya E (2009) Bergmann glial S100B activates myo-inositol monophosphatase 1 and Co-localizes to purkinje cell vacuoles in SCA1 transgenic mice. Cerebellum 8:231-244.
    Viviani B, Corsini E, Galli CL, Marinovich M (1998) Glia increase degeneration of hippocampal neurons through release of tumor necrosis factor-alpha. Toxicology and applied pharmacology 150:271-276.
    Wang PS, Liu RS, Yang BH, Soong BW (2007) Regional patterns of cerebral glucose metabolism in spinocerebellar ataxia type 2, 3 and 6 : a voxel-based FDG-positron emission tomography analysis. Journal of neurology 254:838-845.
    Xue YP, Zheng YG, Shen YC (2005) Preparation of trehalase inhibitor validoxylamine A by biocatalyzed hydrolysis of validamycin A with honeybee (Apis cerana Fabr.) beta-glucosidase. Applied biochemistry and biotechnology 127:157-171.
    Yamada K, Fukaya M, Shibata T, Kurihara H, Tanaka K, Inoue Y, Watanabe M (2000) Dynamic transformation of Bergmann glial fibers proceeds in correlation with dendritic outgrowth and synapse formation of cerebellar Purkinje cells. The Journal of comparative neurology 418:106-120.

    下載圖示
    QR CODE