簡易檢索 / 詳目顯示

研究生: 胡立強
Li-Chiang Hu
論文名稱: 約分諧波鎖模光纖雷射之研究與應用
Study of Rational Harmonic Mode-Locked Fiber Laser and Applications
指導教授: 曹士林
Tsao, Shyh-Lin
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 117
中文關鍵詞: 約分諧波鎖模光孤子光纖通訊雷射
英文關鍵詞: Rational harmonic mode-locking, soliton, optical communication, laser
論文種類: 學術論文
相關次數: 點閱:280下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出約分諧波鎖模光纖雷射應用於光分時多工傳輸系統之研究。於雷射光源之共振腔部份,是利用一個振幅調變器,注入外加調變訊號使其操作在約分諧波鎖模模式,以達成倍增光脈衝序列之重複率的效果,並調整振幅調變器之直流偏壓使其操作在非線性區的範圍,達成輸出脈衝振幅等化的效果。於傳輸系統方面,我們模擬脈衝經過光孤子壓縮後應用於光分時多工傳輸系統的情形。在長距離傳輸過程中,我們以長距離單模光纖搭配色散補償光纖,使色散造成得以補償,並以摻鉺光纖放大器補償長距離傳輸的損失,最後,我們針對40 Gbit/s, 80 Gbit/s和160 Gbit/s的分時多工系統進行了傳輸效能的評估。

    In this thesis, we propose a rational harmonic mode-locked fiber laser applied to optical time-division-multiplexing transmission system (OTDM). In the cavity of the laser source, we utilize an amplitude modulator driven by external modulation signal to let the laser operate in rational harmonic mode locking to multiply the repetition rate of the optical pulse train. And then, we adjust the DC bias voltage of the amplitude modulator in nonlinear region to equalize the amplitude of the output pulse train. In optical transmission systems, we simulate the case of the pulse after soliton-effect compression applied to optical time-division-multiplexing transmission system. In the long-distance transmission system, we insert the dispersion-compensated fiber to compensate chromatic dispersion, and use the erbium doped fiber amplifier to compensate the loss caused by long distance transmission. Finally, we evaluate the performance of the OTDM transmission system for data rate of 40 Gbit/s, 80 Gbit/s, and 160 Gbit/s.

    Contents Chinese Abstract………………………………………………...i English Abstract………………………….……………………..ii Acknowledgment………………………..…………………….. iv Contents……………………………………………………….. .v List of Figures………………………………………….……...viii List of Tables…………………………………………………..xiv Chapter 1 Introduction…………………………………………1 Chapter 2 Experimental Analysis of Rational Harmonic Mode-Locked Fiber Laser………………………….4 2-1 Introduction…………..…..………………………………………..…...4 2-2 Physics of Active Mode-Locking ………….....………………………..6 2-2-1 Fundamental Mode-Locking……….………………...………..11 2-2-2 Harmonic Mode-Locking…………………...………………...15 2-2-3 Rational Harmonic Mode-Locking………….………………...17 2-3 Experimental Analysis of Rational Harmonic Mode-Locked Fiber Laser...…………………………………………………………..…...19 2-3-1 Measurement of MZI modulator transmission function………20 2-3-2 Experimental Setup……………………………………………22 2-3-3 Analysis of Results……………………………………………23 2-3-3-1 5 GHz Pulse Train Generation………………….….…25 2-3-3-2 7.5 GHz Pulse Train Generation…………………...…26 2-3-3-3 10 GHz Pulse Train Generation……………….…...…27 2-3-3-4 15 GHz Pulse Train Generation……………….….…..27 2-3-3-5 20 GHz Pulse Train Generation…………......….….…28 2-3-4 Amplitude Equalization of Rational Harmonic Mode-locked Laser…………………………………………………………..28 2-3-4-1 Principle…………......….………………………….…29 2-3-4-2 Experimental Result…………......….……………..…30 2-4 Discussion and Summary...………………………………………...…32 Chapter 3 The Soliton-Effect Compression Technique..…….56 3-1 Introduction ………………………...…………………..……..……...56 3-2 Soliton Pulse Compression…………...…………................................59 3-2-1 Theory of Soliton Pulse Compression……......……………….59 3-2-2 Simulation of Soliton Pulse Compression………………...…..65 3-3 Pulse Reshaping…...…………………………………...….………….66 3-3-1 Theory of Pulse Reshaping……………………….………..….67 3-3-2 System Description and Result...……………………….…..…68 3-4 Summary………………………………….……………………..……69 Chapter 4 Optical Time-Division-Multiplexing Transmission System………………………………...…….…….83 4-1 Introduction…………...………………………………………...…….83 4-2 High Speed Laser Source……………………………………………..85 4-3 OTDM Multiplexing and Demultiplexing…..……...………………...86 4-4 Single-Channel OTDM Transmission………………………………...88 4-5 Summary and Discussion……………………………….………...…..92 Chapter 5 Conclusions……...……………………..…………103 References………………………………………………..…...105 Publication Lists…………………………………………….………xvii

    [1] P. Y. chien, “Time-division multiplexing, pseudo-PM optical communicationsystem base on triangular waveform modulated laser diode,” J. Opt. Commun., vol. 13, pp. 23-25, 1992.
    [2] A. D. Ellis, D. M. Patrick, D. Flannery, R. J. Manning, D. A. O. Davies,and D. M. Spirit, “Ultra-high speed OTDM networks using semiconductor amplifier-based processing nodes,” J. Lightwave Technol., vol. 13, pp. 761–770, 1995.
    [3] V. W. S. Chan, K. L. Hall, E. Modiano, and K. A. Rauschenbach, “Architectures and Technologies for High-Speed Optical Data Networks,” J. Lightwave Technol., vol. 16, pp. 2146-2168, 1998.
    [4] S. Kawanishi, “Ultrahigh-speed optical time-division-multiplexed transmission technology based on optical signal processing,” IEEE J. Quantum Electron., vol. 34, pp. 2064-2079, 1998.
    [5] M. Nakazawa, H. Kubota, K. Suzuki, E. Yamada, and A. Sahara, “Ultrahigh-speed long distance TDM and WDM soliton transmission. technologies,” IEEE J. Sel. Topics Quantum Electron., vol. 6, pp. 363–396, 2000.
    [6] I. N. Duling III, “Subpicosecond all-fiber erbium laser,” Electron. Lett., vol. 27, pp. 544-545, 1991.
    [7] M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelocked polarization-maintaining erbium fiber ring laser,” Electron. Lett., vol. 30, pp. 1603–1605, 1994.
    [8] M. Nakazawa, K. Kimura, and E. Yoshida, “Supermode noise suppression in a harmonically modelocked fiber laser by selfphase modulation and spectral filtering,” Electron. Lett., vol. 32, pp. 461–463, 1996.
    [9] D. Jones, H. Haus, and E. Ippen, “Subpicosecond solitons in an activelymode-locked fiber laser,” Opt. Lett., vol. 21, pp. 1818–1820, 1996.
    [10] E. Yoshida, Y. Kimura, and M. Nakazawa, “20 Ghz, 1.8 ps pulse generation from a regeneratively modelocked erbium-doped fiber laser and its femtosecond pulse compression,” Electron. Lett., vol. 31, pp. 377–378, 1995.
    [11] M. Nakazawa, E. Yoshida, and K. Kimura, “Ideal phase-locked-loop operation of a 10 Ghz erbium-doped fiber laser using regenerative modeloking as an optical voltage controlled oscillator,” Electron. Lett., vol. 33, pp. 1318–1320, 1997.
    [12] K. Kimura and M. Nakazawa, “Dispersion-tuned harmonically modelocked fiber ring laser for self-synchronization to an external clock,” Opt. Lett., vol. 21, pp. 1984–1986, 1996.
    [13] F. K. Artner, D. Kopf, and U. Keller, “Solitary-pulse stabilization and shortening in actively mode-loked lasers,” J. Opt. Soc. Amer. B, vol. 12, pp. 486–496, 1995.
    [14] K. Gurs and R. Murller, "Beats and modulation in optical ruby lasers," Quantum Electronics, pp. 1113–1119, 1964.
    [15] H. A. Haus, "Mode-locking of lasers," IEEE J. Quantum Electron., vol. 6, pp. 1173-1185, 2000.
    [16] I. P. Alcock, A. I. Ferguson, D. C. Hanna, and A. C. Tropper, “Tunable, continuous-wave neodymium-doped monomode-fiber laser operating at 0.900 - 0.945 and 1.070 - 1.135 Mum,” Opt. Lett, vol. 11, pp. 709, 1986.
    [17] I. N. Duling, L. Goldberg, and J. F. Weller, “High-power, mode-locked Nd:fibre laser pumped by aninjection-locked diode array,” Electron. Lett., vol. 24, pp. 1333, 1988.
    [18] D. C. Hanna, A. Kazer,M.W. Phillips, D. P. Shepherd, and P. I. Suni, “Active mode-locking of an Yb:Er fibre laser,” Electron. Lett., vol. 25, pp. 95, 1989.
    [19] M. E. Fermann, A. Galvanauskas, G. Sucha, and D. Harter, “Fiber-lasers for ultrafast optics,” Appl. Phys. B, vol. 65, pp. 259, 1997.
    [20] L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and I. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B, vol. 65, pp. 277, 1997.
    [21] J. Wilson, and Hawks, “Lasers: principles and applications,” Prentice Hall, 2nd Edn., Chap. 3, 1987.
    [22] K. Noguchi, O. Mitomi, and H. Miyazawa, “Millimeter-wave Ti:LiNbO3 optical modulators,” J. Lightwave Technol., vol. 16, pp. 615, 1998.
    [23] D. Kuizenga, and A. Siegman, “FM and AM mode locking of the homogeneous laser-Part I: Theory,” IEEE J. Quantum Electron., vol. 6, pp.694-708, 1970.
    [24] B. Bakhshi, and P. Andrekson, “40GHz actively modelocked polarisation maintaining erbium fibre laser,” Electron Lett., vol. 5, pp. 411-412, 2000.
    [25] Z. Ahmed, and N. Onodera, “High repetition rate optical pulse generation by frequency multiplication in actively mode-locked fibre ring lasers,” Electron. Lett., vol. 5, pp. 55-57, 1996.
    [26] M. Nakazawa, E. Yoshida, and Y. Kimura, “Ultrastable harmonically and regeneratively modelockedpolarisation-maintaining erbium fibre ring laser,” Electron. Lett., vol. 30, pp. 1603-1605, 1994.
    [27] M. Y. Jeon, H. K. Lee, J. T. Ahn, D. S. Lim, H. Y. Kim, K. H. Kim E. H. Lee, “External fibre laser based pulse amplitude equalisation scheme forrational harmonic modelocking in a ring-type fibre laser,” Electron. Lett., vol. 34, pp. 182-184, 1998.
    [28] E. Yoshida, and M. Nakazawa, “80~200 GHz erbium doped fibre laser using a rational harmonicmode-locking technique,” Electron. Lett., vol. 32, pp. 1370-1372, 1996.
    [29] D. L. A. Seixas, and M. C. R. Carvalho, “50 GHz fiber ring laser using rational harmonic mode-locking,” IEEE MTT-S IMOC., vol. 1, pp. 351–353, 1987.
    [30] D. Kuizenga and A. Siegman, “FM and AM mode locking of the homogeneous laser--Part I: Theory,” IEEE J. Quantum Electron., vol. 6, pp. 694-708, 1970.
    [31] D. Kuizenga and A. Siegman, “FM and AM mode locking of the homogeneous laser--Part II: Experimental results in a Nd:YAG laser with internal FM modulation,” Quantum Electronics, IEEE Journal of., vol. 6, pp. 709-715, 1970.
    [32] M.-Y. Jeon, H. K. Lee, K. H. Kim, E.-H. Lee, S. H. Yun, B. Y. Kim, and Y. W. Koh, “An electronically wavelength-tunable mode-locked fiber laser using an all-fiber acoustooptic tunable filter,” Photonics Tech. Lett., vol. 8, pp. 1618-1620, 1996.
    [33] M. Y. Jeon, H. K. Lee, J. T. Ahn, D. S. Lim, H. Y. Kim, K. H. Kim, and E. H. Lee, “External fibre laser based pulse amplitude equalisation scheme forrational harmonic modelocking in a ring-type fibre laser,” Electron. & Telecommun. Res. Inst, vol. 34, pp. 182-184, 1998.
    [34] H. J. Lee, K. Kim, and H. G. Kim, “Pulse-amplitude equalization of rational harmonic mode-locked fiber laser using a semiconductor optical amplifier loop mirror,” Opt. Commun., vol. 160, pp. 51–56, 1999.
    [35] Z. Li, C. Lou, K. T. Chan, Y. Li, and Y. Gao, “Theoretical and experimental study of pulse-amplitude-equalization in a rational harmonic mode-locked fiber ring laser,” IEEE J. Quantum Electron., vol. 37, pp. 33–37, Jan. 2001.
    [36] M. Y. Jeon, H. K. Lee, J. T. Ahn, D. S. Lim, H. Y. Kim, K. H. Kim, and E. H. Lee, “External fiber laser based pulse amplitude equalization scheme for rational harmonic modelocking in a ring-type fiber laser,” Electron. Lett., vol. 34, no. 2, pp. 182–184, 1998.
    [37] Y. Shiquan, L. Zhaohui, Z. Chunliu, D. Xiaoyi, Y. N. Shuzhong, K. Guiyun, and Z. Qida, “Pulse-amplitude-equalization in a rational harmonic mode-locked fiber ring laser by using modulator as both modelocker and equalizer,” IEEE Photon. Tech. Lett., vol. 15, pp. 389–391, 2003.
    [38] X. Feng, Y. Liu, S. Yuan, G. Kai,W. Zhang, and X. Dong, “Pulse-amplitude equalization in a rational harmonic mode-locked fiber laser using nonlinear modulation,” IEEE Photon. Technol. Lett., vol. 16, no. 8, pp. 1813–1815, 2004.
    [39] G. Zhu, H. Chen, and N. Dutta, “Time domain analysis of a rational harmonic mode locked ring fiber laser,” Appl. Phys. Journal., vol. 90, pp. 2143-2147, 2001.
    [40] F. E. Wickens, U. M. Spirit , and L. C. Blank, , “20Gbit/s, 205km optical time division multiplexed transmission system,” Electron. Lett., vol. 27, pp. 973-974, 1991.
    [41] J. R. Klauder, A. C. Price, S. Darlington, and W. J. Albersheim., “The Theory and Design of Chirp Radars,” Bell Syst. Tech.J., vol. 39, pp.745-820, 1960.
    [42] C. V. Shank, R. Yen, and R. L. Fork, “Picosecond Dynamics of Photoexcited Gap States in Polyacetylene,” Phys. Rev. Lett., vol. 49, pp. 1660-1663, 1982.
    [43] S. L. Palfrey and D. R. Grischkowsky, “Generation of 16-fsec frequency-tunable pulses by optical pulse compression,” Opt. Lett., vol. 10, pp. 562, 1985.
    [44] W. H. Knox, R. L. Fork, M. C. Downer, D. A. B. Miller, D. S. Chemla, and C. V. Shank, “Femtosecond Dynamics of Resonantly Excited Excitons in Room-Temperature GaAs Quantum Wells,” Phys. Rev. Lett., vol. 46, pp. 1120, 1985.
    [45] R. L. Fork, C. H. Brito Cruz, P. C. Becker, and C. V. Shank, “Compression of optical pulses to six femtoseconds by using cubic phase compensation,” Opt. Lett., vol. 12, pp. 483, 1987.
    [46] D. G. Ouzounov, F. R. Ahmad, D. Muller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, and A. L. Gaeta, “Generation of megawatt optical solitons in hollow-core photonic band-gap fibers,” Science, vol. 301, pp. 1702–1704, 2003.
    [47] F. Luan, J. C. Knight, P. St. J. Russell, S. Campbell, D. Xiao, D. T. Reid, B. J. Mangan, D. P. Williams, and P. J. Roberts, “Femtosecond soliton pulse delivery at 800 nm wavelength in hollow-core photonic bandgap fibers,” Opt. Express., vol. 12, pp. 835-840, 2004.
    [48] D. Ouzounov, C. Hensley, A. Gaeta, N. Venkateraman, M. Gallagher, K. Koch, “Soliton pulse compression in photonic band-gap fibers,” Opt. Lett., vol. 13, pp. 6153-6159, 2005.
    [49] L. F. Mollenauer, R. H. Stolen, J. P. Gordon, and W. J. Tomlinson, “Extreme picosecond pulse narrowing by means of soliton effect in single-mode optical fibers,” Opt Lett. , vol. 8, pp. 289, 1983.
    [50] E. M. Dianov, A. Ya. Karasik, and P. V. Mamyshev, “100-Fold compression of picosecond pulses from a parametric light source in single-mode optical fibers at wavelengths 1.5–1.65 μm,” JETP. . Lett., vol. 40, pp. 903, 1984.
    [51] L. F. Mollenauer, R. H. Stolen, and J. P. Gordon, “Experimentalobservation of picosecond pulse narrowing andsolitons in optical fibers,” Phys. Rev. Lett. , vol. 45, pp. 1095, 1980.
    [52] Govind P. Agrawal, “Nonlinear fiber optics”, third edition, 2001.
    [53] C. V. Shank, R. L. Fork, R. Yen, R. H. Stolen, and W. J. Tomlinson, “Compression of femtosecond optical pulses,” Appl. Phys. Lett., vol. 40, pp. 761, 1982.
    [54] B. Nikolaus and D. Grischkowsky, “12X pulse compression using optical fibers,” Appl. Phys. Lett.,vol. 42, vol. 1, 1983.
    [55] E. M. Dianov, A. Ya, Karasik, P. V. Mamyshev, G. I. Onishukov, A. M. Prokhorov, M. F. Stelmakh. and A. A. Fomichev, “Picosecond structure of the pump pulse in stimulated Raman scattering in a single-mode fiber,” JETP Lett., vol. 39, pp. 691-695, 1984.
    [56] Govind P. Agrawal, “Applications of Nonlinear fiber optics”, 2001.
    [57] P. K. A. Wai, C. R. Menyuk, H. H. Chen, and Y. C. Lee, “Soliton at the zero-group-dispersion wavelength of a single-model fiber,” Opt. Lett., vol. 12, pp. 628, 1987.
    [58] M. Nakazawa, K. Suzuki, and E. Yamada, “Femtosecond optical pulse generation using a distributed-feedback laser diode,” Electron. Lett., vol.26, pp. 2038-2040, 1990.
    [59] L. Chusseau and E. Delevaque, “250-fs optical pulse generation by simultaneous soliton compression and shaping in a nonlinear optical loop mirror including a weak attenuation,” Opt. Lett., vol. 19, pp. 734-736, 1994.
    [60] R. H. Stolen, J. Botineau, and A. Ashkin, “Intensity discrimination of optical pulses with birefringent fibers,” Opt. Lett., vol. 7, pp. 512-514, 1982.
    [61] H. Kobrinski, R. M. Bulky, M. S. Goodman, M. P. Vecchi, C. A. Brackett, L. Curtis, and J. L. Gimlet, “Demonstration of high capacity in the LAMBDANET architecture: A multiwavelength optical network,” Electron. Lett., vol. 23, pp. 824-826, 1987.
    [62] O. E. De Lange, “Wide-band optical communications systems: Part II-Frequency division multiplexing,” Proc. IEEE., vol. 58, pp. 1683-1690, 1970.
    [63] T. S. Kinsel, and R. T. Denton, “Terminals for a high-speed optical pulse code modulation communication system: II. Optical multiplexing and demultiplexing,” Proc. IEEE., vol. 56, pp. 146-154, 1968.
    [64] F. S. Chen, “Demultiplexers for high-speed optical PCM,” Quantum Electron., vol. QE-7, pp. 24-29, 1971.
    [65] D. M. Spirit, and L. C. Blank, “Optical time division multiplexing for future high-capacity network applications,” BT Technol. Journ., vol. 11, pp. 35-45, 1993.
    [66] S. Kawanishi, “Time division multiplexed 100 GWs,” OFC., vol. 39, 1994.
    [67] A. D. Ellisand, and D. M. Spirit, “Unrepeatered transmission over80kmstandard fiber at 40 Gb/s,” Electron. Lett., vol. 30, pp. 72-74, 1994.
    [68] A. D. Ellisand, T. Widdowson, and X. Shan, “A 3 node, 40 Gb/s OTDMnetwork experiment using electro-optic switches,” Electron. Lett., vol. 30, pp. 1333-1334, 1994.
    [69] S . J. Buchsbaum and R. Kompfner, “Time-division multiplex opticaltransmission system,” U.S. Patent 3 506 834, 1970.
    [70] T. S. Kinsel and F. S. Chen, “Experimental evaluation of an optical time division demultiplexer for twenty-four channels,” Appl. Opt., vol. 11, pp. 1411-1418, 1972.
    [71] M. Thewalt, “Time domain multiplexing of signals on an optical fiber using mode-locked laser pulses,” IBM Tech. Disclosure Bull., vol. 24, pp. 2473-2475, 1981.
    [72] A. Alping, T. Andersson, R. Tell, and S . T. Eng, “20-Gbit/s optical time multiplexing with TJS GaAlAs lasers,” Elecrron. Lett., vol. 18, pp. 422-424, 1982.
    [73] K. Iwatsuki, K. Suzuki, S. Nishi, and M. Saruwatari, “40 Gbit/s optical soliton transmission over 65km,” Elecrron. Lett., vol. 28, pp. 1821-1822, 1992.
    [74] M. Artiglia, E. Ciaramella, and P. Gallina, “Demonstration of CW oliton trains at 10, 40 and 160 GHz by means of induced modulation nstability,” Opt. Lett., vol. 12 pp. 305–308, 1997.
    [75] M. Nakazawa, T. Yamamoto, and K. R. Tamura, “1.28 Tbit/s-70 km OTDM transmission using third- and fourth-order simultaneous dispersion compensation with a phase modulator,” Electron. Lett., vol. 36, no.24, pp. 2027–2029, 2000.
    [76] A. Takada, T. Sugie, and M. Saruwatari, “High-speed picosecond optical compression from gain-switched 1.3 m distributed feedback (DFB) LD through highly dispersive single-mode fiber,” J. Lightwave Technol., vol. LT-5, pp. 1525–1533, 1987.
    [77] M. Nakazawa, K. Suzuki, and E. Yamada, “Femtosecond optical pulse generation using a distributed-feedback laser diode,” Electron. Lett., vol. 26, pp. 2038–2040, 1990.
    [78] J. T. Ong, R. Takahashi, M. Tsuchiya, S.-H. Wong, R. T. Sahara, Y. Ogawa, and T. Kamiya, “Subpicosecond soliton compression of gain switched diode laser pulses using an erbium-doped fiber amplifier,” IEEE J. Quantum Electron., vol. 29, pp. 1701–1707, 1993.
    [79] R. P. Davey, K. Smith, R. Wyatt, D. L. Williams, M. J. Holmes, D. M. Pataca, M. L. Rocha, and P. Gunning, “Subpicosecond pulse generation from a 1.3 μm DFB laser gain-switched at 1 GHz,” Electron. Lett., vol. 32, pp. 349–351, 1996.
    [80] M. Miyamoto, M. Tsuchiya, H.-F. Liu, and T. Kamiya, “Generation of ultrafast (~65 fs) pulses from 1.55 μm gain-switched distributed feedback (DFB) laser with soliton compression by dispersion arrangements,” Jpn. J. Appl. Phys., vol. 35, pp. L1330–L1332, 1996.
    [81] M. Suzuki, H. Tanaka, N. Edagawa, K. Utaka, and Y. Matsushima,“Transform-limited optical pulse generation up tp 20-GHz repetition
    rate by a sinusoidally driven InGaAsP electroabsorption modulator,” J. Lightwave Technol., vol. 11, pp. 468–473, 1993.
    [82] M. Suzuki, N. Edagawa, H. Taga, H. Tanaka, S. Yamamoto, and S. Akiba, “Feasibility demonstration of 20 Gbit/s single channel soliton transmission over 11500 km using alternating-amplitude solitons,” Electron. Lett., vol. 30, pp. 1083–1084, 1994.
    [83] M. J. Guy, S. V. Chernikov, J. R. Taylor, D. G. Moodie, and R. Kashyap, “Generation of transform-limited optical pulses at 10 GHz using an electroabsorption modulator and a chirped fiber Bragg grating,” Electron. Lett., vol. 31, pp. 671–672, 1995.
    [84] D. D. Marcenac, A. D. Ellis, and D. G. Moodie, “80 Gbit/s OTDM using electroabsorption modulators,” in Tech. Dig. ECOC’97, pp. 23–26, 1997.
    [85] H. Takara, S. Kawanishi, M. Saruwatari, and K. Noguchi, “Generation of highly stable 20 GHz transform-limited optical pulses from actively mode-locked Er3+-doped fiber lasers with an all polarizationmaintaining ring cavity,” Electron. Lett., vol. 28, pp. 2095–2096, 1992.
    [86] J. B. Schlager, P. D. Hale, and D. L. Franzen, “Subpicosecond pulse compression and Raman generation using a mode-locked erbium-doped fiber laser-amplifier,” IEEE Photon. Technol. Lett., vol. 2, pp. 562–564, 1990.
    [87] A. Takada and H. Miyazawa, “30 GHz picosecond pulse generation from actively mode-locked erbium-doped fiber laser,” Electron. Lett., vol. 26, pp. 216–217, 1990.
    [88] Th. Pfeiffer and G. Veith, “40 GHz pulse generation using a widely tunable all-polarization preserving erbium fiber ring laser,” Electron. Lett., vol. 29, pp. 1849–1850, 1993.
    [89] D. Foursa, P. Emplit, R. Leners, and L. Meuleman, “18 GHz from a σ-cavity Er-fiber laser with dispersion management and rational harmonic active mode-locking,” Electron. Lett., vol. 33, pp. 486–488, 1997.
    [90] A. D. Ellis, R. J. Manning, I. D. Phillips, and D. Nesset, “1.6 ps pulse generation at 40 GHz in phaselocked ring laser incorporating highly nonlinear fiber for application to 160 Gbit/s OTDM networks,” Electron. Lett., vol. 35, no. 8, pp. 645–646, Apr. 1999.
    [91] G. Raybon et al., “Wavelength-tunable actively mode-locked monolithic laser with an integrated vertical coupler filter,” Opt. Lett., vol. 18, no. 16, pp. 1335–1337, 1993.
    [92] C. Wu, and N. K. Dutta, “High-repetition-rate optical pulse generation using a rational harmonic mode-locked fiber laser,” IEEE J. Quantum Electron., vol. 36, pp. 145–150, 2000.
    [93] G. T. Harvey and L. F. Mollenauer, “Harmonically mode-locked fiber ring laser with an internal Fabry–Pérot stabilizer for soliton transmission,” Opt. Lett., vol. 18, no. 2, pp. 107–109, 1993.
    [94] G. P. Agrawal, Fiber-Optical Communication System, 3nd ed.New York: Wiley, 2002.

    QR CODE