研究生: |
柳彥成 Liou, Yan-Cheng |
---|---|
論文名稱: |
(一) 使用鄰羥基對亞甲基苯醌經由 1,6-膦加成/氧-醯化/威悌反應建構官能化苯并呋喃衍生物
(二) 膦催化之化學選擇性還原/亞硝酸離去/威悌反應建構 3-烯基苯并呋喃衍生物
(三) 亞烷基米氏酸與亞胺葉立德經 (3+2) 環加成/內酯化反應合成高鏡像選擇性之𠳭酮[4,3-b]吡咯啶 I. Synthesis of Functionalized Benzofurans from para-Quinone Methides via Phospha-1,6-Addition/O-Acylation/Wittig Pathway II. Phosphine-catalyzed Chemoselective Reduction/Elimination/Wittig Reaction Sequence for Synthesis of Functionalized 3-Alkenyl Benzofurans III. Enantioselective Construction of Chromeno[4,3-b]pyrrolidines from Meldrum’s Acid Alkylidenes and Azomethide Ylides via the (3+2) Cycloaddition/Lactonization Pathway |
指導教授: |
林文偉
Lin, Wenwei |
口試委員: |
林文偉
Lin, Wenwei 張永俊 Jang, Yeong-Jiunn 陳焜銘 Chen, Kwunmin 姚清發 Yao, Ching-Fa 劉維民 Liu, Wei-Min |
口試日期: | 2022/07/15 |
學位類別: |
博士 Doctor |
系所名稱: |
化學系 Department of Chemistry |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 310 |
中文關鍵詞: | 苯并呋喃 、膦試劑 、分子內威悌反應 、對亞甲基苯醌 、3-烯基苯并呋喃 、催化膦 、威悌反應 、亞硝酸脫除 、亞胺葉立德 、米氏酸 、不對稱催化 、𠳭酮[4,3-b]吡咯啶 |
英文關鍵詞: | 1,6-Addition, 2,3-Diarylbenzofuran, Wittig reaction, Catalytic Wittig reaction, Nitrous acid elimination, 3-Alkenylbezofuran, Chromeno[4,3-b]pyrrolidine, Asymmetric catalyst, Azomethide ylide, Meldrum’s acid |
研究方法: | 實驗設計法 、 行動研究法 |
DOI URL: | http://doi.org/10.6345/NTNU202201092 |
論文種類: | 學術論文 |
相關次數: | 點閱:124 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
(一)穩定的鄰羥基對亞甲基苯醌化合物通過有機膦、醯氯和鹼處理,在無金屬且溫和條件下,有效合成官能化的苯并呋喃。同時,在催化條件下亦證明此一鍋化法之1,6-膦加成/氧-醯化/威悌反應,具有相似的合成官能化苯并呋喃的功效。
(二)經由使用催化量的膦試劑進行分子內威悌反應,提供在無金屬條件下建構官能化 3-烯基苯并呋喃的有效方法。該一鍋化反應是通過將有機膦進行麥可加成到氧-醯化之硝基苯乙烯而引發,其中膦是通過用苯基矽烷對氧化膦進行化學選擇性還原而生成,從而產生膦葉立德,通過氧-醯化/亞硝酸消除/威悌反應製備多官能化的 3-烯基苯并呋喃衍生物。
(三)亞烷基米氏酸與亞胺葉立德經由硫脲片段衍生之金雞納鹼催化下,在短時間內進行 (3+2) 環加成/酯交換反應,在短時間內建構優異產率與鏡像選擇性之𠳭酮[4,3-b]吡咯啶衍生物。此外,我們根據實驗結果的發現,提出了催化劑與亞烷基米氏酸活化的反應模型。
(一)An efficient synthesis of functionalized benzofurans is achieved under mild and metal free conditions from stable para-quinone methides by treatment with phosphine, acyl chloride, and a base. This one-pot phospha-1,6-addition/O-acylation/Wittig reaction is also demonstrated under catalytic conditions with similar efficacy.
(二)A highly efficient protocol for the synthesis of functionalized 3-alkenyl benzofurans is demonstrated under metal-free conditions using catalytic amount of phosphine proceeding an intramolecular Wittig reaction. This one-pot reaction was initiated by the phospha-Michael addition of phosphine to O-acylated nitrostyrene, in which phosphine was in-situ generated from the chemoselective reduction of phosphine oxide with PhSiH3, would provide the phosphorus ylide to result in the aforementioned multifunctionalized benzofuran via O-acylation/nitrous acid elimination/Wittig reaction.
(三)A quinine-derived thiourea-catalyzed enantioselective (3+2) cycloaddition/desymmetrization transesterification reaction of Meldrum’s acid alkylidenes with azomethine ylides is realized in minute-scale. The desired chromeno[4,3-b]pyrrolidines were obtained in moderate to excellent yields with excellent stereoselectivities. Moreover, a plausible dual activation catalytic model via the hydrogen bonding interaction of the moiety of catalyst towards Meldrum’s acid alkylidene was proposed according to the findings in this study.
1. (a) Corey, E. J.; Fuchs, P. L. Tetrahedron Lett., 1972, 13, 3769-3772. (b) Eymery, F.; Iorga, B.; Savignac, P. Synthesis 2000, 2000, 185-213. (c) Fu, X.; Loh, W.-T.; Zhang, Y.; Chen, T.; Ma, T.; Liu, H.; Wang, J.; Tan, C.-H. Angew. Chem. Int. Ed. 2009, 48, 7387-7390. (d) Wonneberger, P.; König, N.; Kraft, F. B.; Sárosi, M. B.; Hey-Hawkins, E. Angew. Chem. Int. Ed. 2019, 58, 3208-3211.
2. Horner, L.; Jurgeleit, W.; Klupfel, K. Liebigs Ann. Chem. 1955, 591, 108−117.
3. Rauhut, M. M.; Currier, H. U.S. Patent 3074999, 1963; Chem. Abstr. 1963, 58, 66109.
4. Morita, K.; Suzuki, Z.; Hirose, H. Bull. Chem. Soc. Jpn. 1968, 41, 2815−2816.
5. Baylis, A. B.; Hillman, M. E. D. German Patent 2155113, 1972; Chem. Abstr. 1972, 77, 34174.
6. (a) Wittig, G.; Geissler, G. Liebigs Ann. Chem, 1953, 580, 44-57. (b) Wittig, G.; Schöllkopf, U. Chem. Ber. 1954, 97, 1318-1330. (c) Wittig, G.; Haag, W. Chem. Ber. 1955, 88, 1654-1656.
7. Horner, L.; Hoffmann, H.; Wippel, H. G. Chem. Ber. 1958, 91, 61-63.
8. Wadsworth, W. S.; Emmons, W. D. J. Am. Chem. Soc. 1961, 83, 1733-1738.
9. Staudinger, H.; Meyer, J. Helv. Chim. Acta. 1919, 2, 635-646.
10. (a) Gololobov, Y. G.; Zhmurova, I. N.; Kasukhin, L. F. Tetrahedron 1981, 37, 437-472. (b) Molina, P., Vilaplana, M. J. Synthesis 1994, 1994, 1197-1218.
11. Appel, R. Angew. Chem. Int. Ed. 1975, 14, 801-811.
12. (a) Mitsunobu, O.; Yamada, M. Bull. Chem. Soc. Jpn. 1967, 40, 2380-2382. (b) Mitsunobu, O. Synthesis 1981, 1981, 1-28.
13. Kao, T.-T.; Syu, S.-E.; Jhang, Y.-W.; Lin, W. Org. Lett. 2010, 12, 3066–3069.
14. (a) Wang, D.-W.; Syu, S.; Hung, Y.-T.; Chen, P.; Lee, C. J.; Chen, K.-W.; Chen, Y.-J.; Lin, W. Org. Biomol. Chem. 2011, 9, 363-366. (b) Jang, Y.-J.; Syu, S.; Chen, Y.-J.; Yang, M.-C.; Lin, W. Org. Biomol. Chem. 2012, 10, 843-847. (c) Tsai, Y.-L.; Das, U.; Syu, S.; Lee, C.-J.; Lin, W. Eur. J. Org. Chem. 2013, 2013, 4634-4641.
15. Tsai, Y.-L.; Fan, Y.-S.; Lee, C.-J.; Huang, C.-H.; Das, U.; Lin, W. Chem. Commun. 2013, 49, 10266-10268.
16. Lee, Y.-T.; Jang, Y.-J.; Syu, S.-e.; Chou, S.-C.; Lee, C.-J.; Lin, W. Chem. Commun. 2012, 48, 8135-8137.
17. (a) Yang, S.-M.; Wang, C.-Y.; Lin, C.-K.; Karanam, P.; Reddy, G. M.; Tsai, Y.-L.; Lin, W. Angew. Chem. Int. Ed. 2018, 57, 1668-1672. (b) Chen, Y.-R.; Reddy, G. M.; Hong, S.-H.; Wang, Y.-Z.; Yu, J.-K.; Lin, W. Angew. Chem. Int. Ed. 2017, 56, 5106-5110.
18. Syu, S.-e.; Lee, Y.-T.; Jang, Y.-J.; Lin, W. Org. Lett. 2011, 13, 2970–2973.
19. Jansen, R.; Gerth, K.; Steinmetz, H.; Reinecke, S.; Kessler, W.; Kirschning, A.; Müller, R. Chem. Eur. J. 2011, 17, 7739-7744.
20. Takao, K.-i.; Sasaki, T.; Kozaki, T.; Yanagisawa, Y.; Tadano, K.-i.; Kawashima, A.; Shinonaga, H. Org. Lett. 2001, 3, 4291–4294.
21. Singh, G.; Pandey, R.; Pankhade, Y. A.; Fatma, S.; Anand, R. V. Chem. Rec. 2021, 21, 4150-4173.
22. Gao, S.; Xu, X.; Yuan, Z.; Zhou, H.; Yao, H.; Lin, A. Eur. J. Org. Chem. 2016, 2016, 3006-3012. (b) Hao, Y.-J.; Hu, X.-S.; Yu, J.-S.; Zhou, F.; Zhou, Y.; Zhou, J. Tetrahedron 2018, 74, 7395-7398. (c) He, F.-S.; Jin, J.-H.; Yang, Z.-T.; Yu, X.; Fossey, J. S.; Deng, W.-P. ACS Catal. 2016, 6, 652-656.
23. Chu, W.-D.; Zhang, L.-F.; Bao, X.; Zhao, X.-H.; Zeng, C.; Du, J.-Y.; Zhang, G.-B.; Wang, F.-X.; Ma, X.-Y.; Fan, C.-A. Angew. Chem. Int. Ed. 2013, 52, 9229-9233. (b) Ge, L.; Lu, X.; Cheng, C.; Chen, J.; Cao, W.; Wu, X.; Zhao, G. J. Org. Chem. 2016, 81, 9315–9325.
24. Deng, Y.-H.; Zhang, X.-Z.; Yu, K.-Y.; Yan, X.; Du, J.-Y.; Huang, H.; Fan, C.-A. Chem. Commun. 2016, 52, 4183-4186. (b) Zhao, K.; Zhi, Y.; Wang, A.; Enders, D. ACS Catal. 2016, 6, 657–660.
25. Reddy, V. R.; Maripally, N.; Mutyala, R.; Nanubolu, J. B.;Chandra, R. Tetrahedron Lett. 2018, 59, 2631-2635.
26. Lou, Y.; Cao, P.; Jia, T.; Zhang, Y.; Wang, M.; Liao, J. Angew. Chem. Int. Ed. 2015, 54, 12134-12138. (b) Molleti, N.; Kang, J. Y. Org. Lett. 2017, 19, 958–961. (c) López, A.; Parra, A.; Jarava-Barrera, C.; Tortosa, M. Chem. Commun. 2015, 51, 17684-17687. (d) Dong, N.; Zhang, Z.-P.; Xue, X.-S.; Li, X.; Cheng, J.-P. Angew. Chem. Int. Ed. 2016, 55, 1460-1464.
27. Zhao, K.; Zhi, Y.; Shu, T.; Valkonen, A.; Rissanen, K.; Enders, D. Angew. Chem. Int. Ed. 2016, 128, 12283-12287.
28. Zhang, L.; Zhou, X.; Li, P.; Liu, Z.; Liu, Y.; Sun, Y.; Li, W. RSC Adv. 2017, 7, 39216-39220. (b) Cao, Z.; Zhou, G.-X.; Ma, C.; Jiang, K.; Mei, G.-J. Synthesis 2018, 50, 1307-1314. (c) Zhang, L.; Liu, Y.; Liu, K.; Liu, Z.; He, N.; Li, W. Org. Biomol. Chem. 2017, 15, 8743-8747. (d) Mei, G.-J.; Xu, S.-L.; Zheng, W.-Q.; Bian, C.-Y.; Shi, F. J. Org. Chem. 2018, 83, 1414–1421. (e) Jiang, X.-L.; Wu, S.-F.; Wang, J.-R.; Mei, G.-J.; Shi, F. Adv. Synth. Catal. 2018, 360, 4225–4235. (f) Huang, H.-M.; Wu, X.-Y.; Leng, B.-R.; Zhu, Y.-L.; Meng, X.-C.; Hong, Y.; Jiang, B.; Wang, D.-C. Org. Chem. Front. 2020, 7, 414–419. (g) Zhang, Z.-P.; Xie, K.-X.; Yang, C.; Li, M.; Li, X. J. Org. Chem. 2018, 83, 364–373.
29. Liu, Q.; Li, S.; Chen, X.-Y.; Rissanen, K.; Enders, D. Org. Lett. 2018, 20, 3622-3626. (b) Li, W.; Yuan, H.; Liu, Z.; Zhang, Z.; Cheng, Y.; Li, P. Adv. Synth. Catal. 2018, 360, 2460-2464. (c) Zhou, J.; Liang, G.; Hu, X.; Zhou, L.; Zhou, H. Tetrahedron 2018, 74, 1492-1496.
30. Liu, L.; Yuan, Z.; Pan, R.; Zeng, Y.; Lin, A.; Yao, H.; Huang, Y. Org. Chem. Front. 2018, 5, 623–628.
31. Chen, X.-M.; Xie, K.-X.; Yue, D.-F.; Zhang, X.-M.; Xu, X.-Y.; Yuan, W.-C. Tetrahedron 2018, 74, 600–605.
32. Zhi, Y.; Zhao, K.; von Essen, C.; Rissanen, K.; Enders, D. Org. Chem. Front. 2018, 5, 1348–1351.
33. Singh, G.; Goswami, P.; Sharma, S.; Anand, R. V. J. Org. Chem. 2018, 83, 10546–10554.
34. Lee, C.-J.; Chang, T.-H.; Yu, J.-K.; Reddy, G. M.; Hsiao, M.-Y.; Lin, W. Org. Lett. 2016, 18, 3758–3761.
35. Chen, K.-W.; Syu, S.-e.; Jang, Y.-J.; Lin, W. Org. Biomol. Chem. 2011, 9, 2098-2106.
1. Rode, C. V.; Gupte, S. P.; Chaudhari, R. V.; Pirozhkov, C. D.; Lapidus, A. L. J. Mol. Catal. 1994, 91, 195-206.
2. Yoshihisa, W.; Yasushi, T.; Ryo, T. Bull. Chem. Soc. Jpn. 1984, 57, 3011-3012.
3. Hardy, W. B.; Bennett, R. P. Tetrahedron Lett. 1967, 8, 961-962.
4. Oh, J. S.; Lee, S. M.; Yeo, J. K.; Lee, C. W.; Lee, J. S. Ind. Eng. Chem. Res. 1991, 30, 1456-1461.
5. Ono, N.; Miyake, H.; Tamura, R.; Kaji, A. Tetrahedron Lett. 1981, 22, 1705-1708.
6. Osby, J. O.; Ganem, B. Tetrahedron Lett. 1985, 26, 6413-6416.
7. Ballini, R.; Bosica, G. Tetrahedron 1995, 51, 4213-4222.
8. Ballini, R.; Petrini, M. Adv. Synth. Catal. 2015, 357, 2371-2402.
9. Dong, L.; Chen, F.-E. RSC Adv. 2020, 10, 2313-2326.
10. Alvarez-Casao, Y.; Marques-Lopez, E.; Herrera, R. P. Symmetry 2011, 3, 220-245. (b) Milner, S. E.; Moody, T. S.; Maguire, A. R. Eur. J. Org. Chem. 2012, 2012, 3059-3067.
11. Berner, Otto M.; Tedeschi, L.; Enders, D. Eur. J. Org. Chem. 2002, 2002, 1877-1894. (b) Roca-Lopez, D.; Sadaba, D.; Delso, I.; Herrera, R. P.; Tejero, T.; Merino, P. Tetrahedron: Asymmetry 2010, 21, 2561-2601. (c) Halimehjani, A. Z.; Karimi, N.; Saidi, M. R. Synth. Commun. 2013, 43, 744-748.
12. Noble, A.; Anderson, J. C. Chem. Rev. 2013, 113, 2887-2939.
13. Satham, L.; Sankara, C. S.; Namboothiri, I. N. N. Eur. J. Org. Chem. 2020, 2020, 6903-6908.
14. Ganesh, M.; Namboothiri, I. N. N. Tetrahedron 2007, 63, 11973-11983. (b) Greger, J. G.; Yoon-Miller, S. J. P.; Bechtold, N. R.; Flewelling, S. A.; MacDonald, J. P.; Downey, C. R.; Cohen, E. A.; Pelkey, E. T. J. Org. Chem. 2011, 76, 8203-8214.
15. Halimehjani, A. Z.; Namboothiri, I. N. N.; Hooshmand, S. E. RSC Adv. 2014, 4, 48022-48084.
16. Awasthi, C.; Yadav, L. D. S. Synlett 2010, 2010, 1783-1788.
17. Kuroda, Y.; Imaizumi, K.; Yamada, K.-i.; Yamaoka, Y.; Takasu, K. Tetrahedron Lett. 2013, 54, 4073-4075.
18. Huang, C.-Y.; Kuo, C.-W.; Kavala, V.; Yao, C.-F. Eur. J. Org. Chem. 2016, 2016, 2720-2734.
19. Ballini, R.; Palmieri, A. Adv. Synth. Catal. 2019, 361, 5070-5097.
20. Ballini, R.; Fiorini, D.; Palmieri, A. Tetrahedron Lett. 2005, 46, 1245-1246.
21. Nair, D. K.; Mobin, S. M.; Namboothiri, I. N. N. Org. Lett. 2012, 14, 4580-4583.
22. Sakiyama, N.; Noguchi, K.; Tanaka, K. Angew. Chem. Int. Ed. 2012, 51, 5976-5980.
23. Ohno, S.; Qiu, J.; Miyazaki, R.; Aoyama, H.; Murai, K.; Hasegawa, J.-y.; Arisawa, M. Org. Lett. 2019, 21, 8400–8403.
24. Iqbal, N.; Iqbal, N.; Maiti, D.; Cho, E. J. Angew. Chem. Int. Ed. 2019, 131, 15955-15959.
25. Ali, M. U.; Fitzpatrick-Lewis, D.; Kenny, M.; Raina, P.; Atkins, D. L.; Soar, J.; Nolan, J.; Ristagno, G.; Sherifali, D. Resuscitation 2018, 132, 63-72.
26. Liou, Y.-C.; Karanam, P.; Jang, Y.-J.; Lin, W. Org. Lett. 2019, 21, 8008–8012 (b) Yang, S.-M.; Wang, C.-Y.; Lin, C.-K.; Karanam, P.; Reddy, G. M.; Tsai, Y.-L.; Lin, W. Angew. Chem. Int. Ed. 2018, 57, 1668-1672. (c) Fan, Y.-S.; Das, U.; Hsiao, M.-Y.; Liu, M.-H.; Lin, W. J. Org. Chem. 2014, 79, 11567–11582. (d) Lee, Y.-T.; Jang, Y.-J.; Syu, S.-e.; Chou, S.-C.; Lee, C.-J.; Lin. W. Chem. Commun. 2012, 48, 8135-8137.
27. Kolodiazhnyi, O. I.; Kolodiazhna, O. O. Syn. Commun. 2012, 42, 1637-1649.
28. Li, S.-N.; Xu, L.-T.; Chen, Y.; Li, J.-L.; He, L. Lett. Org. Chem. 2011, 8, 416-422.
29. Freeman, A. W.; Urvoy, M.; Criswell, M. E. J. Org. Chem. 2005, 70, 5014–5019.
30. Creencia, E. C.; Kosaka, M.; Muramatsu, T.; Kobayashi, M.; Iizuka, T.; Horaguchi, T. J. Heterocyclic Chem., 2009, 46, 1309-1317. (b) Balaji, G.; Shim, W. L.; Parameswaran, M.; Valiyaveettil, S. Org. Lett. 2009, 11, 4450–4453.
31. Carter, M. E.; Nash Jr., J. L.; Drueke Jr., J. W.; Schwietert, J. W.; Butler, G. B. J. Polym. Sci. Polym. Chem. Ed. 1978, 16, 937-959.
32. Campbell, T. W.; Monagle, J. J. J. Am. Chem. Soc. 1962, 84, 1493.
33. Marsden, S. P.; McGonagle, A. E.; McKeever-Abbas, B. Org. Lett. 2008, 10, 2589–2591.
34. O'Brien, C. J.; Tellez, J. L.; Nixon, Z. S.; Kang, L. J.; Carter, A. L.; Kunkel, S. R.; Przeworski, K. C.; Chass, G. A. Angew. Chem. Int. Ed. 2009, 48, 6836-6839.
35. Lee, C.-J.; Chang, T.-H.; Yu, J.-K.; Reddy, G. M.; Hsiao, M.-Y.; Lin, W. Org. Lett. 2016, 18, 3758-3761.
36. Gao, Y.; Yang, S.; Huo, Y.; Hu, X.-Q. Adv. Synth. Catal. 2020, 362, 3971-3986.
37. Kodukulla, R. P. K.; Trivedi, G. K.; Vora, J. D.; Mathur, H. H. Syn. Comm. 1994, 24, 819-832.
1. Vashistha, V. K.; Sethi, S.; Tyagi, I.; Das, D. K. Asian Bio. 2022, 16, 55-69. (b) Boussouar, I.; Chen, Q.; Chen, X.; Zhang, Y.; Zhang, F.; Tian, D.; White, H. S.; Li, H. Anal. Chem. 2017, 89, 1110–1116. (c) Saha, D.; Kharbanda, A.; Yan, W.; Lakkaniga, N. R.; Frett, B.; Li, H.-Y. J. Med. Chem. 2020, 63, 441–469.
2. Hussain, K.; Patel, P.; Roberts, N. Clin Exp Dermatol, 2022, 47: 667-674. (b) Gao, S.; Wang, S.; Fan, R.; Hu, J. Bio. & Pharm. 2020, 127, 110114-110119.
3. Yutthalekha, T.; Wattanakit, C.; Lapeyre, V.; Nokbin, S.; Warakulwit, C.; Limtrakul, J.; Kuhn, A. Nat. Commun. 2016, 7, 12678-12685.
4. Żądło-Dobrowolska, A.; Koszelewski, D.; Paprocki, D.; Madej, A.; Wilk, M.; Ostaszewski, R. ChemCatChem 2017, 9, 3047-3057.
5. Dondoni, A.; Massi, A. Angew. Chem. Int. Ed. 2008, 47, 4638-4660.
6. Chekan, J. R.; McKinnie, S. M. K.; Moore, M. L.; Poplawski, S. G.; Michael, T. P.; Moore, B. S. Angew. Chem. Int. Ed. 2019, 58, 8454-8457. (b) Traber, M. G., Vitamin E. Adv. Nut. 2021, 12, 1047-1048.
7. Haight, A. R.; Bailey, A. E.; Baker, W. S.; Cain, M. H.; Copp, R. R.; DeMattei, J. A.; Ford, K. L.; Henry, R. F.; Hsu, M. C.; Keyes, R. F.; King, S. A.; McLaughlin, M. A.; Melcher, L. M.; Nadler, W. R.; Oliver, P. A.; Parekh, S. I.; Patel, H. H.; Seif, L. S.; Staeger, M. A.; Wayne, G. S.; Wittenberger, S. J.; Zhang, W. Org. Proc. Res. Dev. 2004, 8, 897–902.
8. Dubuffet, T.; Newman-Tancredi, A.; Cussac, D.; Audinot, V.; Loutz, A.; Millan, M. J.; Lavielle, G. Bio. Med. Chem. Lett. 1999, 9, 2059-2064.
9. Cao, J.; Liu, J.-Y.; Zhang, Y.-M.; Wang, Z.-Y.; Xu, P.-F. Org. Chem. Front. 2019, 6, 674-678.
10. Painter, T. O.; Kaszas, K.; Gross, J.; Douglas, J. T.; Day, V. W.; Iadarola, M. J.; Santini, C. Bio. Med. Chem. Lett. 2014, 24, 963-968.
11. Esteban, F.; Cieślik, W.; Arpa, E. M.; Guerrero-Corella, A.; Díaz-Tendero, S.; Perles, J.; Fernández-Salas, J. A.; Fraile, A.; Alemán, J. ACS Catal. 2018, 8, 3, 1884–1890. (b) Cao, J.; Fang, R.; Liu, J.-Y.; Lu, H.; Luo, Y.-C.; Xu, P.-F. Chem. Eur. J. 2018, 24, 18863-18867.
12. Breugst, M.; Reissig, H.-U. Angew. Chem. Int. Ed. 2020, 59, 12293-12307.
13. Yang, Z.-X.; Wei, Y.-Q.; Yang, C.; Li, Y.-F.; Ding, C.-H.; Xu, B. Asian J. Org. Chem. 2022, 11, e202100683. (b) Acharya, A.; Montes, K.; Jeffrey, C. S. Org. Lett. 2016, 18, 6082–6085.
14. Obydennov, D. L.; Steben’kov, V. D.; Obydennov, K. L.; Usachev, S. A.; Moshkin, V. S.; Sosnovskikh, V. Y. Synthesis 2021, 53, 2621-2631.
15. Tu, L.; Li, Z.; Feng, T.; Yu, S.; Huang, R.; Li, J.; Wang, W.; Zheng, Y.; Liu, J. J. Org. Chem. 2019, 84, 11161–11169.
16. Domingo, L. R.; Ríos-Gutiérrez, M.; Pérez, P. J. Org. Chem. 2018, 83, 10959–10973.
17. Przydacz, A.; Bojanowski, J.; Albrecht, A.; Albrecht, Ł. Org. Biomol. Chem. 2021, 19, 3075-3086.
18. Chang, G.-H.; Wang, C.-Y.; Madhusudhan Reddy, G.; Tsai, Y.-L.; Lin, W. J. Org. Chem. 2016, 810, 10071–10080.
19. Yang, S.-M.; Reddy, G. M.; Wang, T.-P.; Yeh, Y.-S.; Wang, M.; Lin, W. Chem. Commun. 2017, 53, 7649-7652.
20. Yu, J.-K.; Chien, H.-W.; Lin, Y.-J.; Karanam, P.; Chen, Y.-H.; Lin, W. Chem. Commun. 2018, 54, 9921-9924.
21. Li, T.; Wang, J.; Xu, J.; Jin, J.; Chi, Y. R.; Jin, Z. Org. Lett. 2020, 22, 326–330.
22. Tian, L.; Xu, G.-Q.; Li, Y.-H.; Liang, Y.-M.; Xu, P.-F. Chem. Commun. 2014, 50, 2428-2430.
23. Kowalczyk, D.; Albrecht, Ł. J. Org. Chem. 2016, 81, 6800–6807.
24. Meldrum, A. N. J. Chem. Soc. Trans. 1908, 93, 598-601.
25. Davidson, D.; Bernhard, S. A., J. Am. Chem. Soc, 1948, 70, 3426–3428.
26. Pfluger, C. E.; Boyle, P. D. J. Chem. Soc., Perkin Trans. 2, 1985, 1547-1549.
27. Brosge, F.; Singh, P.; Almqvist, F.; Bolm, C. Org. Biomol. Chem. 2021, 19, 5014-5027.
28. List, B.; Castello, C. Synlett 2001, 2001, 1687-1689.
29. Shi, J.; Liu, Y.; Wang, M.; Lin, L.; Liu, X.; Feng, X. Tetrahedron 2011, 67, 1781-1787.
30. Berini, C.; Sebban, M.; Oulyadi, H.; Sanselme, M.; Levacher, V.; Brière, J.-F. Org. Lett. 2015, 17, 5408–5411.
31. Belot, V.; Farran, D.; Jean, M.; Albalat, M.; Vanthuyne, N.; Roussel, C. J. Org. Chem. 2017, 82, 10188-10200.
32. Dumas, A. M.; Seed, A.; Zorzitto, A. K.; Fillion, E. Tetrahedron Lett. 2007, 48, 7072-7074.