研究生: |
方羿云 Fang, Yi-Yun |
---|---|
論文名稱: |
前導組織與提示策略對高低先備知識國小生以擴增實境輔助micro:bit程式設計學習成效、動機及態度之探討 Effects of Types of Advance Organizer, Prompting and Prior Knowledge on Elementary Students' micro:bit Programming Performance, Motivation and Attitude through AR-assisted Learning |
指導教授: |
陳明溥
Chen, Ming-Puu |
口試委員: |
王麗君
Wang, Li-Chun 陳浩然 Chen, Hao-Jan 陳明溥 Chen, Ming-Puu |
口試日期: | 2022/08/08 |
學位類別: |
碩士 Master |
系所名稱: |
資訊教育研究所 Graduate Institute of Information and Computer Education |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 中文 |
論文頁數: | 181 |
中文關鍵詞: | 前導組織 、提示策略 、先備知識 、擴增實境 、micro:bit程式設計 |
英文關鍵詞: | advance organizer, prompting strategy, prior knowledge, augmented reality, micro:bit |
研究方法: | 準實驗設計法 |
DOI URL: | http://doi.org/10.6345/NTNU202300146 |
論文種類: | 學術論文 |
相關次數: | 點閱:147 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討前導組織及提示策略對於不同先備知識國小學習者以擴增實境輔助micro:bit程式設計學習成效、動機及態度。本研究採因子設計之準實驗研究法,有效樣本136人。自變項包含前導組織、提示策略及先備知識。「前導組織」分為「問題前導組織」與「圖解前導組織」;提示策略分為「概念提示」與「功能提示」;「先備知識」分為「高先備知識」與「低先備知識」。依變項包含程式設計之學習成效(知識記憶、知識理解、知識應用)、學習動機(價值成分、期望成分、科技接受度)與學習態度(自信心、學習喜好、學習焦慮、學習過程、學習方法、學習價值)。
研究結果顯示:就學習成效而言,(1)知識理解方面:高先備知識組優於低先備知識組;(2)知識應用方面:高先備知識組優於低先備知識組、圖解前導組織組優於問題前導組織組、學習者接受概念提示時,高先備知識組表現優於低先備知識組。就學習動機而言,(3)內在目標導向、外在目標導向、工作價值、控制信念、期望成功、科技易用性方面:高先備知識組優於低先備知識組;(4)科技有效性方面:高先備知識組優於低先備知識組、功能提示組優於概念提示組。就學習態度而言,(5)學習焦慮方面,學習者接受問題前導組織時,概念提示組高於功能提示組;而學習者接受概念提示時,問題前導組織組高於圖解前導組織組。
The aim of this study was to investigate the effects of types of advance organizer (AO), prompting strategy and prior knowledge (PK) on elementary students’ micro:bit programming performance, motivation and attitude through AR-assisted learning. A quasi-experimental design was employed and a total of 136 sixth-graders participated in the experimental activity. The independent variables included advance organizer (question vs. graphical), promting strategy (concept-completed vs. function-completed), and prior knowledge (low-level vs. high-level). The dependent variables were students’ learning performance, motivation and attitude.
The results revealed that: first, in terms of learning knowledge performance, (a) for knowledge comprehension: the high-PK learners outperformed the low-PK learners; (b) for knowledge application: the graphical-AO group outperformed the question-AO group; while receiving the concept-compeleted prompt, the high-PK learners outperformed the low-PK learners. Secondly, in terms of learning motivation, (c) for intrinsic goal orientation, extrinsic goal-orientation, task value, control of learning beliefs, expectancy for success, technology usability: the high-PK learners revealed higer degree of motivation than the low-PK learners; (d) for technology utility: the high-PK learners revealed higer degree of utility than the low-PK learners; the function-compeleted prompt group revealed higer degree of utility than the concept-compeleted prompt group. Last, in terms of learning attitude, (e) for learning anxiety: while receiving the question-AO the concept-compeleted prompt group revealed the higer degree of anxiety than the function-compeleted group, however, while receiving the conpcept-compeleted prompt, the question-AO group revealed the higer degree of anxiety than the graphical-AO group.
中文部分
王正如(2010)。機器車前導組織對程式設計心智模型的影響(未出版碩士論文)。臺灣師範大學資訊教育研究所學位論文,台北市。
何品萱、王麗君、陳明溥(2017)。互動式擴增實境在國中生機器人程式設計學習之探討。中等教育, 68(3),16-33。
林育慈、吳正己(2016)。運算思維與中小學資訊科技課程。教育脈動,6,5-20。
洪詩玲(2010)。完成問題策略對基本程式概念教學的學習成效研究─以國小四年級學生為例(未出版碩士論文)。國立交通大學理學院科技與數位學習學程學位論文,新竹市。
張春興(1994)。教育心理學:三化取向的理論與實踐。台北:東華出版社。
張新仁(1993)。奧斯貝的學習理論與教學應用。教育研究雙月刊,32,31-35。
張曉瑀(2018)。目標設定與引導策略對不同先備知識國中生以智慧眼鏡輔助機器人程式設計學習之成效及動機探討(未出版碩士論文)。 臺灣師範大學資訊教育研究所學位論文,台北市。
教育部 (2018)。十二年國民基本教育課程綱要科技領域課綱。取自https://www.naer.edu.tw/upload/1/16/doc/816/十二年國民基本教育課程綱要國民中學暨普通型高級中等學校-科技領域.pdf。
教育部(2016)。教育部 2016-2020 資訊教育總藍圖。臺北市:教育部。
郭家禎(2020)。教學方式與引導策略對國小四年級學習者 micro: bit 程式設計學習成效及態度之影響(未出版碩士論文)。 臺灣師範大學資訊教育研究所學位論文,台北市。
陳信廷、鍾崇燊(2003)。奧蘇伯爾學習理論應用在化學教學-碳六十的結構。化學,61(1),135-144。
陳柏亨(2007)。不同前置組織對高中學生學習化學反應及相關概念成效(未出版碩士論文)。臺灣師範大學科學教育研究所學位論文,台北市。
霍秉坤、黃顯華(2000)。教科書前導組體設計之探討。課程與教學,3(2),95-114。
英文部分
Alexopoulou, E. & Driver, R. (1996). Small‐group discussion in physics: Peer interaction modes in pairs and fours. Journal of Research in Science Teaching, 33(10), 1099-1114.
Antonioli, M., Blake, C., & Sparks, K. (2014). Augmented reality applications in education. The Journal of Technology Studies, 96-107.
Armoni, M., Meerbaum-Salant, O. & Ben-Ari, M. (2015). From scratch to “real” programming. ACM Transactions on Computing Education (TOCE), 14(4), 1-15.
Ausubel, D. P. (1963). The psychology of meaningful verbal learning. New York: Grune & Stratton.
Ausubel, D. P.(1968). Educational psychology: A cognitive view (Vol. 6). New York: Holt, Rinehart and Winston.
Azuma, R. T. (1997). A survey of augmented reality. Presence: Teleoperators & Virtual Environments, 6(4), 355-385.
Barnes, B. R. & Clawson, E. U. (1975). Do advance organizers facilitate learning? Recommendations for further research based on an analysis of 32 studies. Review of Educational Research, 45(4), 637-659.
Bascones, J., Venezuela, & Novak, J. D. (1985). Alternative instructional systems and the development of problem‐solving skills in physics. The European Journal of Science Education, 7(3), 253-261.
Bateson, A. G., Alexander, R. A. & Murphy, M. D. (1987). Cognitive processing differences between novice and expert computer programmers. International Journal of Man-Machine Studies, 26(6), 649-660.
Ben-Ari, M. (2001). Constructivism in computer science education. Journal of Computers in Mathematics and Science Teaching, 20(1), 45-73.
Berland, M., & Wilensky, U. (2015). Comparing virtual and physical robotics environments for supporting complex systems and computational thinking. Journal of Science Education and Technology, 24(5), 628-647.
Bers, M. U., Flannery, L., Kazakoff, E. R. & Sullivan, A. (2014). Computational thinking and tinkering: Exploration of an early childhood robotics curriculum. Computers & Education, 72, 145-157.
Billinghurst, M. (2002). Augmented reality in education. New Horizons for Learning, 12(5), 1-5.
Billinghurst, M., Clark, A. & Lee, G. (2015). A survey of augmented reality. Foundations and Trends in Human–Computer Interaction, 8(2-3), 73-272.
Carpenter, S. K., Rahman, S. & Perkins, K. (2018). The effects of prequestions on classroom learning. Journal of Experimental Psychology: Applied, 24(1), 34.
Chang, K. E., Chiao, B. C., Chen, S. W. & Hsiao, R. S. (2000). A programming learning system for beginners-A completion strategy approach. IEEE Transactions on Education, 43(2), 211-220.
Cheng, S. C., Hwang, G. J. & Chen, C. H. (2019). From reflective observation to active learning: A mobile experiential learning approach for environmental science education. British Journal of Educational Technology, 50(5), 2251-2270.
Chiang, T. H., Yang, S. J. & Hwang, G. J. (2014). An augmented reality-based mobile learning system to improve students’ learning achievements and motivations in natural science inquiry activities. Journal of Educational Technology & Society, 17(4), 352-365.
Colliot, T. & Jamet, É. (2018). Does self-generating a graphic organizer while reading improve students' learning? Computers & Education, 126, 13-22.
Connolly, C., Murphy, E. & Moore, S. (2007, September). Second chance learners, supporting adults learning computer programming. International conference on engineering education–ICEE.
Corkill, A. J. (1992). Advance organizers: Facilitators of recall. Educational Psychology Review, 4(1), 33-67.
Craig, A. B. (2013). Understanding augmented reality: Concepts and applications. Newnes.
Davis, R., Kafai, Y., Vasudevan, V., & Lee, E. (2013, June). The education arcade: Crafting, remixing, and playing with controllers for Scratch games. Proceedings of the 12th international conference on interaction design and children (pp. 439-442). New York, US.
De Freitas, S. & Oliver, M. (2006). How can exploratory learning with games and simulations within the curriculum be most effectively evaluated? Computers & Education, 46(3), 249-264.
DesPortes, K., Anupam, A., Pathak, N., & DiSalvo, B. (2016, June). BitBlox: a redesign of the breadboard. Proceedings of the 15th International Conference on Interaction Design and Children (pp. 255-261). Manchester, UK.
Devolder, A., van Braak, J. & Tondeur, J. (2012). Supporting self‐regulated learning in computer‐based learning environments: Systematic review of effects of scaffolding in the domain of science education. Journal of Computer Assisted Learning, 28(6), 557-573.
Dewey, J. (1938). Experience and education. Kappa Delta Pi.
Dijkstra, S., van Hout Wolters, B. H. & van der Sijde, P. (Eds.). (1989). Research on instruction: Design and effects. Englewood Cliffs, N. J.: Educational Technology.
Esteves, M., Fonseca, B., Morgado, L., & Martins, P. (2008, October). Contextualization of programming learning: A virtual environment study. 2008 38th Annual Frontiers in Education Conference (pp. F2A-17). IEEE.
Ferrer-Torregrosa, J., Torralba, J., Jimenez, M. A., García, S. & Barcia, J. M. (2015). ARBOOK: Development and assessment of a tool based on augmented reality for anatomy. Journal of Science Education and Technology, 24(1), 119-124.
Gardeli, A. & Vosinakis, S. (2018). The effect of tangible augmented reality interfaces on teaching computational thinking: A preliminary study. International Conference on Interactive Collaborative Learning (pp. 673–684).
Good, J. (2011). Learners at the wheel: Novice programming environments come of age. International Journal of People-Oriented Programming (IJPOP), 1(1), 1-24.
Grover, S., & Pea, R. (2013). Computational thinking in K–12: A review of the state of the field. Educational Researcher, 42(1), 38-43.
Gurlitt, J. & Renkl, A. (2008). Are high‐coherent concept maps better for prior knowledge activation? Differential effects of concept mapping tasks on high school vs. university students. Journal of Computer Assisted Learning, 24(5),
Hill, J. R. & Hannafin, M. J. (2001). Teaching and learning in digital environments: The resurgence of resource-based learning. Educational Technology Research and Development, 49(3), 37-52
Hsiao, K. F., Chen, N. S. & Huang, S. Y. (2012). Learning while exercising for science education in augmented reality among adolescents. Interactive Learning Environments, 20(4), 331-349.
Hwang, G. J., Chien, S. Y. & Li, W. S. (2021). A multidimensional repertory grid as a graphic organizer for implementing digital games to promote students’ learning performances and behaviors. British Journal of Educational Technology, 52(2), 915-933.
Ibrahim, M. F., Huddin, A. B., Hashim, F. H., Abdullah, M., Rahni, A. A. A., Mustaza, S. M., Hussain, A. & Zaman, M. H. M. (2020). Strengthening Programming Skills among Engineering Students through Experiential Learning Based Robotics Project. International Journal of Evaluation and Research in Education, 9(4), 939-946.
Ichinco, M., Harms, K. J. & Kelleher, C. (2017). Towards Understanding Successful Novice Example Use in Blocks-Based Programming. Journal of Visual Languages and Sentient Systems, 3, 101-118.
Jenkins, T. (2002, August). On the difficulty of learning to program. Proceedings of the 3rd Annual Conference of the LTSN Centre for Information and Computer Sciences (Vol. 4, No. 2002, pp. 53-58). Loughborough, UK.
Jose, S., Patrick, P. G. & Moseley, C. (2017). Experiential learning theory: the importance of outdoor classrooms in environmental education. International Journal of Science Education, Part B, 7(3), 269-284.
Joyce, B., & Weil, M. (2003). Models of Teaching (5th ed.). Englewood Cliffs, N. J.: Prentice-Hall.
Kafai, Y. B., & Burke, Q. (2013). Computer programming goes back to school. Phi Delta Kappan, 95(1), 61-65.
Kalelioğlu, F. (2015). A new way of teaching programming skills to K-12 students: Code. org. Computers in Human Behavior, 52, 200-210.
Kaloti-Hallak, F., Armoni, M., & Ben-Ari, M. (2015, November). Students' attitudes and motivation during robotics activities. Proceedings of the Workshop in Primary and Secondary Computing Education (pp. 102-110). London, UK.
Kamarainen, A. M., Metcalf, S., Grotzer, T., Browne, A., Mazzuca, D., Tutwiler, M. S. & Dede, C. (2013). EcoMOBILE: Integrating augmented reality and probeware with environmental education field trips. Computers & Education, 68, 545-556.
Kato, Y. (2010, January). Splish: a visual programming environment for Arduino to accelerate physical computing experiences. 2010 Eighth International Conference on Creating, Connecting and Collaborating through Computing (pp. 3-10). IEEE.
Kolb, D. A. (1984). Experiential learning: Experience as the source of learning and development. Englewood Cliffs, NJ: Prentice-Hall.
Lahtinen, E., Ala-Mutka, K., & Järvinen, H. M. (2005). A study of the difficulties of novice programmers. Acm Sigcse Bulletin, 37(3), 14-18.
Law, K. M., Lee, V. C. & Yu, Y. T. (2010). Learning motivation in e-learning facilitated computer programming courses. Computers & Education, 55(1), 218-228.
Lee, E. & Hannafin, M. J. (2016). A design framework for enhancing engagement in student-centered learning: Own it, learn it, and share it. Educational Technology Research and Development, 64(4), 707-734.
Lu, S. J. & Liu, Y. C. (2015). Integrating augmented reality technology to enhance children’s learning in marine education. Environmental Education Research, 21(4), 525-541.
Lye, S. Y., & Koh, J. H. L. (2014). Review on teaching and learning of computational thinking through programming: What is next for K-12? Computers in Human Behavior, 41, 51-61.
Margulieux, L. E., Morrison, B. B. & Decker, A. (2020). Reducing withdrawal and failure rates in introductory programming with subgoal labeled worked examples. International Journal of STEM Education, 7(1), 1-16.
Mayer, R. E. & Moreno, R. (1998). A cognitive theory of multimedia learning: Implications for design principles. Journal of Educational Psychology, 91(2), 358-368.
Mayer, R. E. (1976). Some conditions of meaningful learning for computer programming: Advance organizers and subject control of frame order. Journal of Educational Psychology, 68(2), 143.
Milgram, P. & Kishino, F. (1994). A taxonomy of mixed reality visual displays. IEICE Transactions on Information Systems, 77(12), 1321-1329.
Noh, J., & Lee, J. (2020). Effects of robotics programming on the computational thinking and creativity of elementary school students. Educational Technology Research and Development, 68(1), 463-484.
Novak, J. D. (1980). Learning theory applied to the biology classroom. The American Biology Teacher, 42(5), 280-285.
Novak, J. D. (2002). Meaningful learning: The essential factor for conceptual change in limited or inappropriate propositional hierarchies leading to empowerment of learners. Science Education, 86(4), 548-571.
Novak, J. D.(1994). A view on the current status of Ausubel's assimilation theory of learning. Proceedings of the Third International Seminar on Misconceptions and Educational Strategies in Science and Mathematics. Misconceptions Trust: Ithaca.
Papert, S., & Harel, I. (1991). Situating constructionism. Constructionism, 36(2), 1-11.
Pirolli, P. L. & Anderson, J. R. (1985). The role of learning from examples in the acquisition of recursive programming skills. Canadian Journal of Psychology/Revue canadienne de psychologie, 39(2), 240.
Przybylla, M., & Romeike, R. (2015). Key competences with physical computing. KEYCIT 2014: key competencies in informatics and ICT, 7, 351.
Resnick, M., Maloney, J., Monroy-Hernández, A., Rusk, N., Eastmond, E., Brennan, K., ... & Kafai, Y. (2009). Scratch: Programming for all. Communications of the ACM, 52(11), 60-67.
Robins, A., Rountree, J. & Rountree, N. (2003). Learning and teaching programming: A review and discussion. Computer Science Education, 13(2), 137-172.
Rum, S. N. M. & Ismail, M. A. (2017). Metocognitive support accelerates computer assisted learning for novice programmers. Journal of Educational Technology & Society, 20(3), 170-181.
Sáez-López, J. M., Román-González, M. & Vázquez-Cano, E. (2016). Visual programming languages integrated across the curriculum in elementary school: A two year case study using “Scratch” in five schools. Computers & Education, 97, 129-141.
Sáez-López, J. M., Sevillano-García, M. L. & Vázquez-Cano, E. (2019). The effect of programming on primary school students’ mathematical and scientific understanding: educational use of mBot. Educational Technology Research and Development, 67(6), 1405-1425.
Sentance, S., Waite, J., Hodges, S., MacLeod, E., & Yeomans, L. (2017, March). " Creating Cool Stuff" Pupils' Experience of the BBC micro: bit. Proceedings of the 2017 ACM SIGCSE technical symposium on computer science education (pp. 531-536). Seattle Washington, US.
St. Hilaire, K. J. & Carpenter, S. K. (2020). Prequestions enhance learning, but only when they are remembered. Journal of Experimental Psychology: Applied, 26(4), 705.
St. Hilaire, K. J., Carpenter, S. K. & Jennings, J. M. (2019). Using prequestions to enhance learning from reading passages: the roles of question type and structure building ability. Memory, 27(9), 1204-1213.
Sweller, J., Van Merrienboer, J. J. & Paas, F. G. (1998). Cognitive architecture and instructional design. Educational psychology review, 10(3), 251-296.
Teng, C. H., Chen, J. Y. & Chen, Z. H. (2018). Impact of augmented reality on programming language learning: Efficiency and perception. Journal of Educational Computing Research, 56(2), 254-271.
Van Merriënboer, J. J. (1990). Strategies for programming instruction in high school: Program completion vs. program generation. Journal of Educational Computing Research, 6(3), 265-285.
Van Merrienboer, J. J., & Krammer, H. P. (1987). Instructional strategies and tactics for the design of introductory computer programming courses in high school. Instructional Science, 16(3), 251-285.
Wenger, E. (2009). A social theory of learning. In K. Illeris (Ed.), Contemporary Theories of Learning: Learning Theorists in Their Own Words (pp. 209–218). New York: Routledge.
West, M., & Ross, S. (2002). Retaining females in computer science: A new look at a persistent problem. Journal of Computing Sciences in Colleges, 17(5), 1-7.
Wiedenbeck, S., Fix, V. & Scholtz, J. (1993). Characteristics of the mental representations of novice and expert programmers: an empirical study. International Journal of Man-Machine Studies, 39(5), 793-812.
Wood, D., Bruner, J. S., & Ross, G. (1976). The role of tutoring in problem solving. Journal of Child Psychology and Psychiatry, 17(2), 89-100.
Zhi, R., Price, T. W., Marwan, S., Milliken, A., Barnes, T., & Chi, M. (2019, February). Exploring the impact of worked examples in a novice programming environment. Proceedings of the 50th ACM Technical Symposium on Computer Science Education (pp. 98-104). Minneapolis, US.