研究生: |
王薏婷 Yi-Ting Wang |
---|---|
論文名稱: |
以小鼠及細胞模式探討ATXN8OS過量表現之影響 Characterization of ATXN8OS Overexpressed-PC12 Cells and Transgenic Mice |
指導教授: |
謝秀梅
Hsieh, Hsiu-Mei |
學位類別: |
碩士 Master |
系所名稱: |
生命科學系 Department of Life Science |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 106 |
中文關鍵詞: | 脊髓小腦萎縮症 、小鼠 |
英文關鍵詞: | SCA8, PC12, transgenic mice, NGF, in situ hybridization |
論文種類: | 學術論文 |
相關次數: | 點閱:161 下載:1 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
脊髓小腦萎縮症第八型是一種漸進性的神經退化疾病,其致病的原因是由於染色體13q21上的ATXN8OS (又稱作SCA8,或KLHL1AS)基因在3’端外顯子的CTG三核苷酸不正常擴增所造成。目前對於此疾病的詳細致病機轉尚未了解,早期相關文獻指出ATXN8OS基因並不具有轉譯蛋白的功能,而可能是以anti-sense RNA影響對應股的KLHL1基因表現功能;然而最近文獻指出ATXN8OS的反譯股ATXN8,或許會轉譯出polyQ蛋白質,而polyQ蛋白質也正是許多型脊髓小腦萎縮症的致病原因;另外,也有研究指出在ATXN8OS基因上CTG三核苷酸擴增區域前,可能具有IRES活性,而使得此三核苷酸擴增轉譯出polyL毒性蛋白質。為了更進一步去了解ATXN8OS致病的分子機制,我們因而建立了ATXN8OS的轉殖小鼠模式。利用原核胚顯微注射的方法,將人類ATXN8OS基因帶有正常範圍(22)及致病範圍(150)兩種CTG擴增的基因片段,並連接了綠螢光報導基因,藉由NSE啟動子表現在小鼠的神經系統,以進一步了解CTG擴增對於小鼠造成的影響。從實驗結果中,我們發現帶有致病CTG擴增的轉殖小鼠,在小腦中有神經受損及缺失的情況發生,此外藉由行為測試也觀察到小鼠的異常行為,我們同時也將相同的基因架構轉殖進大鼠嗜鉻細胞瘤細胞株(PC12),建立離體的模式,藉此平臺可快速觀測ATXN8OS過度表現會對於神經細胞所產生的影響;從實驗中我們也發現到帶有致病範圍CTG擴增的細胞,在低血清及神經生長因子的分化刺激下,比正常的細胞更容易死亡,且其神經分化的能力也較差,由這些研究結果,我們發現不管ATXN8OS過度表現在離體及活體內均造成神經傷害,這些結果將有利於在相關疾病的基因及藥物治療研究之應用。
Spinocerebellar ataxia type 8 (SCA8) was reported caused by an unstable CTG repeat expansion in the 3’ terminal exon of ATXN8OS (also named SCA, or KLHL1AS) gene on chromosome 13q21. How the trinucleotide expansion causes the disease is not clear now. Some studies indicate that ATXN8OS might not encode protein and play an anti-sense regulatory role on the sense strand gene, KLHL1. However, a recent study indicates that the opposite strand of ATXN8OS, ATXN8, encodes a polyglutamine expansion protein, which might explain the gain-of-function mutation of SCA8 disease as other polyglutamine-mediated SCAs. To further investigate the molecular mechanism of SCA8, a transgenic mouse model was established. The human ATXN8OS full-length cDNA with 22 or 150 CTG repeats in-frame fused with flag-EGFP was used as the transgene and driven by a neuron-specific-enolase (NSE) promoter. Our results show that the transgenic mice with expanded CTGs have some neuropathologies in the cerebella, including the neuronal cell loss and behavior abnormality. To have a quick platform to access the ATXN8OS overexpression effect on neuronal cell level, we also transfected constructs of ATXN8OS with 22 or 150 CTG repeats into the rat pheochromocytoma (PC12) cell line. We found that cells with expanded 150 CTG repeats were more vulnerable and showed reduced neuronal differentiation under low serum and NGF condition compared to cells with normal CTG expansion. With these models, we could gain some information about the molecular effects resulted from overexpression of ATXN8OS in vivo and in vitro, which should further provide more implications for the therapeutic design of SCA8 in the future.
王馨慧。(2007)。Valproic acid 在多麩醯胺酸擴增細胞及動物模式之療效評估。台灣師範大學研究所碩士論文。
林玄原。(2007)。脊髓小腦運動失調症之族群遺傳分析與CTG三核苷重複擴增的分子致病研究。台灣師範大學研究所博士論文。
陳韋倫。(2006)。脊髓小腦萎縮症第八型致病基因分析及建立脊髓小腦萎縮症第八型離體及活體模式。台灣師範大學研究所碩士論文。
Adams J, Kelso R, Cooley L. The kelch repeat superfamily of proteins: propellers of cell function. Trends Cell Biol 2000; 10: 17-24.
Andres AM, Soldevila M, Lao O, Volpini V, Saitou N, Jacobs HT, et al. Comparative genetics of functional trinucleotide tandem repeats in humans and apes. J Mol Evol 2004; 59: 329-39.
Andres AM, Soldevila M, Saitou N, Volpini V, Calafell F, Bertranpetit J. Understanding the dynamics of Spinocerebellar Ataxia 8 (SCA8) locus through a comparative genetic approach in humans and apes. Neurosci Lett 2003; 336: 143-6.
Aromolaran KA, Benzow KA, Koob MD, Piedras-Renteria ES. The Kelch-like protein 1 modulates P/Q-type calcium current density. Neuroscience 2007; 145: 841-50.
Bardwell VJ, Treisman R. The POZ domain: a conserved protein-protein interaction motif. Genes Dev 1994; 8: 1664-77.
Benzow KA, Koob MD. The KLHL1-antisense transcript ( KLHL1AS) is evolutionarily conserved. Mamm Genome 2002; 13: 134-41.
Brusse E, de Koning I, Maat-Kievit A, Oostra BA, Heutink P, van Swieten JC. Spinocerebellar ataxia associated with a mutation in the fibroblast growth factor 14 gene (SCA27): A new phenotype. Mov Disord 2006; 21: 396-401.
Buchholz TA, Davis DW, McConkey DJ, Symmans WF, Valero V, Jhingran A, et al. Chemotherapy-induced apoptosis and Bcl-2 levels correlate with breast cancer response to chemotherapy. Cancer J 2003; 9: 33-41.
David G, Abbas N, Stevanin G, Durr A, Yvert G, Cancel G, et al. Cloning of the SCA7 gene reveals a highly unstable CAG repeat expansion. Nat Genet 1997; 17: 65-70.
Day JW, Schut LJ, Moseley ML, Durand AC, Ranum LP. Spinocerebellar ataxia type 8: clinical features in a large family. Neurology 2000; 55: 649-57.
Del-Favero J, Krols L, Michalik A, Theuns J, Lofgren A, Goossens D, et al. Molecular genetic analysis of autosomal dominant cerebellar ataxia with retinal degeneration (ADCA type II) caused by CAG triplet repeat expansion. Hum Mol Genet 1998; 7: 177-86.
Farlie PG, Dringen R, Rees SM, Kannourakis G, Bernard O. bcl-2 transgene expression can protect neurons against developmental and induced cell death. Proc Natl Acad Sci U S A 1995; 92: 4397-401.
Flanigan K, Gardner K, Alderson K, Galster B, Otterud B, Leppert MF, et al. Autosomal dominant spinocerebellar ataxia with sensory axonal neuropathy (SCA4): clinical description and genetic localization to chromosome 16q22.1. Am J Hum Genet 1996; 59: 392-9.
Furuya H, Shinnoh N, Ohyagi Y, Ikezoe K, Kikuchi H, Osoegawa M, et al. Some flavonoids and DHEA-S prevent the cis-effect of expanded CTG repeats in a stable PC12 cell transformant. Biochem Pharmacol 2005; 69: 503-16.
Gatchel JR, Zoghbi HY. Diseases of unstable repeat expansion: mechanisms and common principles. Nat Rev Genet 2005; 6: 743-55.
Giunti P, Stevanin G, Worth PF, David G, Brice A, Wood NW. Molecular and clinical study of 18 families with ADCA type II: evidence for genetic heterogeneity and de novo mutation. Am J Hum Genet 1999; 64: 1594-603.
Glickstein M. Thinking about the cerebellum. Brain 2006; 129: 288-90.
Grusser-Cornehls U, Baurle J. Mutant mice as a model for cerebellar ataxia. Prog Neurobiol 2001; 63: 489-540.
Harding AE. Clinical features and classification of inherited ataxias. Adv Neurol 1993; 61: 1-14.
Haworth R, McCormack N, Selway S, Pilling AM, Williams TC. Calbindin D-28 and microtubule-associated protein-2: their use as sensitive immunohistochemical markers of cerebellar neurotoxicity in a regulatory toxicity study. Exp Toxicol Pathol 2006; 57: 419-26.
He Y, Zu T, Benzow KA, Orr HT, Clark HB, Koob MD. Targeted deletion of a single Sca8 ataxia locus allele in mice causes abnormal gait, progressive loss of motor coordination, and Purkinje cell dendritic deficits. J Neurosci 2006; 26: 9975-82.
Ho TH, Savkur RS, Poulos MG, Mancini MA, Swanson MS, Cooper TA. Colocalization of muscleblind with RNA foci is separable from mis-regulation of alternative splicing in myotonic dystrophy. J Cell Sci 2005; 118: 2923-33.
Holmes SE, O'Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C, et al. Expansion of a novel CAG trinucleotide repeat in the 5' region of PPP2R2B is associated with SCA12. Nat Genet 1999; 23: 391-2.
Ikeda Y, Daughters RS, Ranum LP. Bidirectional expression of the SCA8 expansion mutation: One mutation, two genes. Cerebellum 2008.
Ikeda Y, Dick KA, Weatherspoon MR, Gincel D, Armbrust KR, Dalton JC, et al. Spectrin mutations cause spinocerebellar ataxia type 5. Nat Genet 2006; 38: 184-90.
Ikeda Y, Shizuka M, Watanabe M, Okamoto K, Shoji M. Molecular and clinical analyses of spinocerebellar ataxia type 8 in Japan. Neurology 2000; 54: 950-5.
Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier JM, et al. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nat Genet 1996; 14: 285-91.
Izumi Y, Maruyama H, Oda M, Morino H, Okada T, Ito H, et al. SCA8 repeat expansion: large CTA/CTG repeat alleles are more common in ataxic patients, including those with SCA6. Am J Hum Genet 2003; 72: 704-9.
Jackson RJ, Hunt SL, Reynolds JE, Kaminski A. Cap-dependent and cap-independent translation: operational distinctions and mechanistic interpretations. Curr Top Microbiol Immunol 1995; 203: 1-29.
Juvonen V, Kairisto V, Hietala M, Savontaus ML. Calculating predictive values for the large repeat alleles at the SCA8 locus in patients with ataxia. J Med Genet 2002; 39: 935-6.
Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, et al. CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 1994; 8: 221-8.
Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 1994; 6: 9-13.
Koob MD, Moseley ML, Schut LJ, Benzow KA, Bird TD, Day JW, et al. An untranslated CTG expansion causes a novel form of spinocerebellar ataxia (SCA8). Nat Genet 1999; 21: 379-84.
La Spada AR, Richards RI, Wieringa B. Dynamic mutations on the move in Banff. Nat Genet 2004; 36: 667-70.
Lilja A, Hamalainen P, Kaitaranta E, Rinne R. Cognitive impairment in spinocerebellar ataxia type 8. J Neurol Sci 2005; 237: 31-8.
Matsuura T, Yamagata T, Burgess DL, Rasmussen A, Grewal RP, Watase K, et al. Large expansion of the ATTCT pentanucleotide repeat in spinocerebellar ataxia type 10. Nat Genet 2000; 26: 191-4.
Moseley ML, Schut LJ, Bird TD, Koob MD, Day JW, Ranum LP. SCA8 CTG repeat: en masse contractions in sperm and intergenerational sequence changes may play a role in reduced penetrance. Hum Mol Genet 2000; 9: 2125-30.
Moseley ML, Zu T, Ikeda Y, Gao W, Mosemiller AK, Daughters RS, et al. Bidirectional expression of CUG and CAG expansion transcripts and intranuclear polyglutamine inclusions in spinocerebellar ataxia type 8. Nat Genet 2006; 38: 758-69.
Nemes JP, Benzow KA, Moseley ML, Ranum LP, Koob MD. The SCA8 transcript is an antisense RNA to a brain-specific transcript encoding a novel actin-binding protein (KLHL1). Hum Mol Genet 2000; 9: 1543-51.
Orozco Diaz G, Nodarse Fleites A, Cordoves Sagaz R, Auburger G. Autosomal dominant cerebellar ataxia: clinical analysis of 263 patients from a homogeneous population in Holguin, Cuba. Neurology 1990; 40: 1369-75.
Orr HT, Chung MY, Banfi S, Kwiatkowski TJ, Jr., Servadio A, Beaudet AL, et al. Expansion of an unstable trinucleotide CAG repeat in spinocerebellar ataxia type 1. Nat Genet 1993; 4: 221-6.
Paulson HL. If it's not one thing, it's another. Nat Genet 2006; 38: 743-4.
Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen XN, Lopes-Cendes I, et al. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nat Genet 1996; 14: 269-76.
Quintero-Mora ML, Depardon F, JamesWaring, Robert GK, Cisneros B. Expanded CTG repeats inhibit neuronal differentiation of the PC12 cell line. Biochem Biophys Res Commun 2002; 295: 289-94.
Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD. Programmed cell death and the control of cell survival: lessons from the nervous system. Science 1993; 262: 695-700.
Ranum LP, Schut LJ, Lundgren JK, Orr HT, Livingston DM. Spinocerebellar ataxia type 5 in a family descended from the grandparents of President Lincoln maps to chromosome 11. Nat Genet 1994; 8: 280-4.
Sanchez C, Diaz-Nido J, Avila J. Phosphorylation of microtubule-associated protein 2 (MAP2) and its relevance for the regulation of the neuronal cytoskeleton function. Prog Neurobiol 2000; 61: 133-68.
Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, et al. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique, DIRECT. Nat Genet 1996; 14: 277-84.
Schmahmann JD, Caplan D. Cognition, emotion and the cerebellum. Brain 2006; 129: 290-2.
Silveira I, Coutinho P, Maciel P, Gaspar C, Hayes S, Dias A, et al. Analysis of SCA1, DRPLA, MJD, SCA2, and SCA6 CAG repeats in 48 Portuguese ataxia families. Am J Med Genet 1998; 81: 134-8.
Sonenberg N. Regulation of translation and cell growth by eIF-4E. Biochimie 1994; 76: 839-46.
Stone J, Smith L, Watt K, Barron L, Zeman A. Incoordinated thought and emotion in spinocerebellar ataxia type 8. J Neurol 2001; 248: 229-32.
Tazon B, Badenas C, Jimenez L, Munoz E, Mila M. SCA8 in the Spanish population including one homozygous patient. Clin Genet 2002; 62: 404-9.
Topisirovic I, Dragasevic N, Savic D, Ristic A, Keckarevic M, Keckarevic D, et al. Genetic and clinical analysis of spinocerebellar ataxia type 8 repeat expansion in Yugoslavia. Clin Genet 2002; 62: 321-4.
Torrens L, Burns E, Stone J, Graham C, Wright H, Summers D, et al. Spinocerebellar ataxia type 8 in Scotland: frequency, neurological, neuropsychological and neuropsychiatric findings. Acta Neurol Scand 2008; 117: 41-8.
van de Warrenburg BP, Sinke RJ, Verschuuren-Bemelmans CC, Scheffer H, Brunt ER, Ippel PF, et al. Spinocerebellar ataxias in the Netherlands: prevalence and age at onset variance analysis. Neurology 2002; 58: 702-8.
Walter JT, Alvina K, Womack MD, Chevez C, Khodakhah K. Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci 2006; 9: 389-97.
Worth PF, Giunti P, Gardner-Thorpe C, Dixon PH, Davis MB, Wood NW. Autosomal dominant cerebellar ataxia type III: linkage in a large British family to a 7.6-cM region on chromosome 15q14-21.3. Am J Hum Genet 1999; 65: 420-6.
Yabe I, Sasaki H, Chen DH, Raskind WH, Bird TD, Yamashita I, et al. Spinocerebellar ataxia type 14 caused by a mutation in protein kinase C gamma. Arch Neurol 2003; 60: 1749-51.
Zeman A, Stone J, Porteous M, Burns E, Barron L, Warner J. Spinocerebellar ataxia type 8 in Scotland: genetic and clinical features in seven unrelated cases and a review of published reports. J Neurol Neurosurg Psychiatry 2004; 75: 459-65.
Zhuchenko O, Bailey J, Bonnen P, Ashizawa T, Stockton DW, Amos C, et al. Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 1997; 15: 62-9.
Zollman S, Godt D, Prive GG, Couderc JL, Laski FA. The BTB domain, found primarily in zinc finger proteins, defines an evolutionarily conserved family that includes several developmentally regulated genes in Drosophila. Proc Natl Acad Sci U S A 1994; 91: 10717-21.