研究生: |
劉可德 Liu, Ko-Te |
---|---|
論文名稱: |
公務人員數位學習的科技接受模式與相關變項關係之研究 Study of Technology Acceptance Model of Civil Service Personnel E-learning and Its Relationships |
指導教授: |
李隆盛
Lee, Lung-Sheng |
學位類別: |
博士 Doctor |
系所名稱: |
科技應用與人力資源發展學系 Department of Technology Application and Human Resource Development |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 126 |
中文關鍵詞: | 公務人員數位學習 、科技接受模式 、學習風格 |
英文關鍵詞: | civil service personnel e-learning, technology acceptance model(TAM), learning style |
論文種類: | 學術論文 |
相關次數: | 點閱:158 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
公部門大力推動公務人員數位學習,而數位學習需善用科技方能相得益彰,所以公務人員運用數位學習的科技接受模式及其相關變項亟待探究。本研究目的在了解公務人員數位學習的科技接受模式,以及科技接受模式與相關變項包含學習風格、課程設計和人口變項之間的關係。自2009年12月至2010年3月間,本研究以e等公務園網站所提供的三個類別六門數位的課程,進行文獻探討和問卷調查蒐集資料,施予科技接受模式、學習風格及人口變項等問卷,共回收有效問卷767份。本研究獲致如下結論:(1)公務人員運用數位學習的科技接受模式含有「知覺有用性」、「知覺有用性」、「知覺易用性」、「使用態度」及「行為意向」四個變項;「知覺有用性」、「知覺易用性」及「使用態度」對公務人員數位學習「行為意向」有直接正向關係。(2)在各變項間「知覺易用性」影響「知覺有用性」,「知覺有用性」與「知覺易用性」影響「使用態度」,「知覺有用性」影響「行為意向」,「使用態度」影響「行為意向」,但「知覺有用性」及「使用態度」在「知覺易用性」與「行為意向」間具有中介效果。(3)前述四個變項經模式逐步推導後,發現與Davis、Bagozzi 和 Warshaw(1989)的科技接受模式理論相符,可知科技接受模式除可應用於企業界外,尚可應用於公部門的數位學習。(4)公務人員科技接受的模式未因「學習風格」、「課程類別」、「課程呈現別」、「性別」、「官職等」、「教育程度」和「電腦使用經驗」等變項不同而有差異。(5)公務人員的科技接受模式因「數位學習經驗」不同而有差異,尤其在「知覺有用性與使用態度」及「使用態度與行為意向」二者之間有差異,宜對三年以下者給予較多有用性資源、課程或關懷。(6) 公務人員數位學習的學習風格趨向發散者,而且科技接受模式又無專題演講與Flash互動式課程呈現別的差異,可考量專題演講或多元的呈現方式,無需拘泥於Flash互動式呈現。
In recent years, the government of Taiwan has encouraged public servants to further develop their competencies through e-learning. Because e-learning is made possible through a variety of information technologies, the Technology Acceptance Model (TAM) can be used to study the public servants’ learning performance and the factors related to their technology adoption. For this study, six courses within three categories, offered by the Civil Service Development Institute, were selected. Relevant data were collected from December 2009 to March 2010 through literature review and questionnaire survey. The questionnaires were designed to measure key variables of TAM, learning styles, curriculum design, and demographics information. A total of 767 valid questionnaires were used in multi-group comparison SEM statistic. The results of the study revealed the following: (1) The TAM showed perceived usefulness, perceived ease of use, attitudes toward using, and behavioral intention to use in civil service personnel e-learning. (2) Perceived usefulness, perceived ease of use and attitudes toward using have a direct positive relationship to behavioral intention to use, but both perceived usefulness and attitudes toward using have mediating effects between perceived ease of use and behavioral intention to use. (3) The TAM is generally applicable in the context of public servant e-learning. (4) Learning style, e-learning presentation, type of course, gender, job grade, education level, and computer using experience have no significant impact on civil service personnel’s technology acceptance. (5) There are particular differences between “perceived usefulness and attitudes toward using” and “attitudes toward using and behavioral intention to use” caused by e-learning experience. There are more resources, courses or concern of perceived usefulness for the three years or less. (6) Differences between the technological media of lecturing and Flash-format do not affect civil service personnel’s learning behavior and perspective. Since civil service personnel characteristics are diverter, this study suggests that course design can consider lecturing or other presentation modes instead of being limited to Flash-format materials.
一、中文部份
行政院人事行政局(2008)。數位學習So Easy―公部門數位學習最佳指南。行政院人事行政局。2009年3月20日,取自:http://www.cpa.gov.tw/。
行政院人事行政局(2009)。行政院所屬各機關公務人員概況。2009年3月13日,取自:http://www.cpa.gov.tw/ct.asp?xItem=1938&ctNode=284&mp=1。
任維廉、呂堂榮和劉柏廷(2009)。科技接受行為模式之整合分析-三個主要模式之比較。國立政治大學資訊管理學系資管評論,15(1),101-138。
周惠文(2003)。動機特質與資訊科技學習成效之關係。國立中央大學資訊管理學系,國科會,NSC91-2520-S-008-008。2008年12月7日,取自:http://210.240.187.63/teaching/2003fall/eLearning/91NSC/A-G/G1-2.pdf。
宗靜萍(2004)。空中大學成人學習風格與網路學習成就之相關研究。國立臺灣師範大學工業科技教育學系博士論文。台北市。全國博碩士論文資訊網,93NTNU5036011。
林信志、湯凱雯和賴信志(2009)。以科技接受模式探討大學生學習以網路教學系統製作數位教材之意圖和成效。數位學習科技期刊,2(1),60-78。
邱文志(2003)。學習網站經營模式之比較與探討。載於台灣電子商務學會舉辦之「2003 電子商務與數位生活研討會」光碟論文集,台北市。
邱華君(2008)。公務人力資源開發運用與保障機制之探討。考銓季刊,55。考試院。2009年3月20日,取自: http://www.exam.gov.tw/ebook/search_list.asp?KEYWORD=&MAIN_CODE=1005&SUB_CODE=&SSUB_CODE=&SSSUB_CODE=&Rnd=0.34495350712181055。
李金泉(2000)。非同步式網路輔助教學之研究─以技職校院工業安全課程為例。彰化師範大學工業教育學系博士論文。彰化市。全國博碩士論文資訊網,89NCUE0037021。
李琇玉(2003)。我國公務人力培訓概況分析探討。T&D飛訊,15。2008年12月7日,取自:http://www.ncsi.gov.tw/NcsiWebFileDocuments/ec1873f70c88c6684632b8b719ad308f.pdf。
李崇詠(2010)。公務人員參與線上學習相關構面之研究。世新大學行政管理學系碩士論文。台北市。台灣博碩士論文知識加值系統。
李嵩義(2006)。高齡學習者學習偏好、社會支持與幸福感關係之研究。高雄師範大學成人教育研究所博士論文。高雄市。台灣博碩士論文知識加值系統。
孟繁宗(2007)。公務人力發展中心混成課程學習滿意度之研究。公務人力發展中心。游於藝電子報,67。2009年3月21日,取自:http://epaper.hrd.gov.tw/67/EDM67-07.htm
吳三靈(2006)。推動公務人員數位學習之現況與展望。行政院人事行政局地方行政研習中心。研習論壇精選,67,99-103。
吳百薰(1998)。國小學生學習風格相關因素之研究。國立台中師範學院國民教育研究所碩士論文,台中市。全國博碩士論文資訊網,86NTCTC576006。
吳齊殷(2007)。網路社會發展政策整合研究。網路社會正義及數位機會政策規劃。行政院研究發展考核委員會委託研究報告(RDEC-RES-095-12)。台北市:行政院研究發展考核委員會。
郭慧中(2010)。2009數位學習產業現狀與產值調查分析。數位典藏與學習之產業發展與推動計畫:數位典藏與數位學習國家型科技計畫第五分項。2010年9月17日,取自:http://idp.teldap.tw/epaper/20100430/430。
計惠卿、吳斯茜和許倩舲(2007a)。公部門數位學習評量機制及訓練績效衡量之研究。公務人力發展中心2007年度委託研究報告。台北市:公務人力發展中心。
計惠卿、吳斯茜和許倩舲(2007b)。數位學習之訓練績效評鑑。研習論壃,81,38-49。
城忠志(2008)。數位時代的學習策略。人事月刊,47(3),55-58。行政院人事行政局地方行政研習中心。2009年3月21日,取自:http://www.exam.gov.tw/。
梁鐿徽和王秋燕(2010)。國民小學教師電腦態度之研究。屏東教育大學學報-教育類,34,103-148。
許慶復和李嵩賢(2007)。台灣公務人力管理與發展策略。考銓季刊,51。考試院。2009年3月20日,取自: http://www.exam.gov.tw/ebook/search_list.asp?KEYWORD=&MAIN_CODE=1005&SUB_CODE=&SSUB_CODE=&SSSUB_CODE=&Rnd=0.34495350712181055。
陳人豪(2005)。2004年我國數位學習產業發展現況(二)。數位學習產業推動與發展計畫。台北:經濟部工業局。2008年11月23日,取自:http://www.elearn.org.tw/NR/exeres/61A8231A-EB39-4549-8EF6-2AEFC169CCFC.htm。
陳玉婷和蔡立元(2009)。從科技接受模式觀點探討資訊科技融入學習。台南科大學報。 28,人文管理類,217-236。2010年7月8日,取自:http://203.68.184.6:8080/dspace/bitstream/987654321/967/1/11-%E5%BE%9E%E7%A7%91%E6%8A%80%E6%8E%A5%E5%8F%97%E6%A8%A1%E5%BC%8F%E8%A7%80%E9%BB%9E-%E9%99%B3%E7%8E%89%E5%A9%B7.pdf。
陳年興和楊錦潭(2006)。數位學習理論與實務(一)。台北:博碩文化出版。
陳貞伶(2006)。公務人員教育訓練學習與績效評估之探討。國立中央大學企業管理研究所碩士論文。桃園縣。全國博碩士論文資訊網,94NCU05121072。
陳姿伶(2005a)。中高階公務人員線上學習經驗之剖析。公務人力發展中心。游於藝雙月刊,49。2010年7月8日,取自:http://epaper.hrd.gov.tw/09_DEVELOP/09_05_monthly/number49/49-5-1.asp?version=49。
陳姿伶(2005b)。混成教學推動策略之研究—以地方公務人員訓練為例。中心出版品。行政院人事行政局地方行政研習中心。2008年11月3日,取自:http://www.rad.gov.tw/learn/learn-1~5.php。
陳姿伶、陳姿蓉和岳修平(2006)。從創新傳播觀點探討公務員學習者的數位學習知覺效益之研究。教學科技與媒體,77,4-20。
張春興(1997)。現代心理學(修訂第二版)。台北市:東華書局。
張錦特、蘇姵芹、何蕙萍和蘇百勝(2009)。以修正科技接受模式探討語音留言板互動功能之使用意願。Journal of e-Business, 11(3), 469-488。
游光昭和林坤誼(2007)。數學、科學、科技統整課程對不同學習風格學習者在學習成效上之影響。教育研究學報,41(1),1-16。國立臺南大學。2009年3月25日,取自:http://scholar.ilib.cn/A-zgdzdxxb-shkx200603016.html。
廖英掌(2009)公務人員數位學習使用意向與行為影響因素之研究。臺中技術學院資訊科技與應用研究所碩士論文,未出版,台中市。
莊煥銘、陳虹眞、和沈家成(2007)。學習路徑、學習風格與數位學習績效之研究──以國中數學科為例。載於中華民國資訊管理學會與銘傳大學舉辦之「第十八屆國際資訊管理學術研討會」論文集,台北市。
黃竹韻(2009)。公部門員工網路學習參與意願與障礙之研究──以臺北市政府為例。生活科技教育月刊,42(1),67-95頁。
楊采璇、呂秉修和王子華(2007)。不同學習風格國小學童在資訊科技融入教學環境之學習成效研究。載於「TANET2007臺灣網際網路研討會」論文集。2009年3月25日,取自:http://itech.ntcu.edu.tw/Tanet%202007/9%5C123.pdf。
資策會(2003)。數位學習最佳指引。台北市:資策會教育訓練處。2-8頁。
數位典藏與數位學習國家型科技計畫(2008)。計畫緣起。數位典藏與數位學習國家型科技計畫。2009年3月20日,取自:http://teldap.tw/Introduction/introduction.php。
劉兆漢(2008a)。數位學習國家型科技計畫結案評估報告。台北:國科會。2008年11月23日,取自:http://teldap.tw/Files/EN9296RP.pdf。
劉兆漢(2008b)。數位學習國家型科技計畫結案成果效益報告。台北市:國科會。2008年11月23日,取自:http://teldap.tw/Files/EN9296RP.pdf。
劉守成(2007)。數位學習與公務人力培訓。考銓季刊,49。考試院。2009年3月16日,取自:http://www.exam.gov.tw/EUpLoad/EBOOK/2301/考銓季刊第49期.pdf。
趙美聲(2005)。國內公務人員數位學習需求調查及具體推動策略與步驟。行政院人事行政局2005年委託研究報告(094D0D008276)。臺灣師範大學教育學系。台北:行政院人事行政局。
趙美聲和陳姚真 (1999) 譯。Kearsley著。遠距教育-系統觀。台北:松崗。
網奕資訊(2008)。教學方法與策略才是關鍵,科技只是觸媒。E-teaching Solution。2008年11月3日,取自:http://www.habook.com. tw/habook_epaper/2008/20080527_eTeaching_digest/20080527_eTeaching.htm。
銓敘部(2010)。銓敘部統計年報。銓敘部。2010年7月18日,取自:http://www.mocs.gov.tw/statistic/main_statistic_a.aspx。
蔡良文(2007)。數位學習與文官體制動能。考銓季刊,49。考試院。2009年3月16日,取自:http://www.exam.gov.tw/EUpLoad/EBOOK/2301/考銓季刊第49期.pdf。
謝國榮(2007)。非正規高齡教育機構英語學習者溝通恐懼、自我導向學習傾向與學習滿意度關係之研究。高雄師範大學成人教育研究所博士論文。全國博碩士論文資訊網,96NKNU5142055。
二、外文部份
Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived usefulness, ease of use, and usage of information technology: A replication. MIS Quarterly,16(2), 227–247.
Agarwal, R., & Prasad, J. (1998). The antecedents and consequents of user perceptions in information technology adoption. Decision Support Systems, 22, pp.15-29.
Ajzen, I. (1985). From intention to actions: A theory of planned behavior. In: J. Kuhl, J., & Beckmann, J. (Eds). Action-control from cognition to behavior( pp.11-39) .Springer-Verlag Berlin Heidelberg.
Anderson, J.C. & Gerbing B.W.(1988). Structural Equation Modling in Practice: A Review and Recommended Two-Step Approach. Psychological Bulletin, 103, pp.411-423.
Aragon, S. R., Johnson, S. D., & Shaik, N. (2002). The influence of learning style preferences on student success in online versus face-to-face environments. American Journal of Distance Education,. 16, pp. 227-244.
Balci, S., Cakiroglu, J., & Tekkaya, C. (2006). Engagement, exploration, explanation, extension, and evaluation (5th Ed.) learning cycle and conceptual change text as learning tools. Biochemistry and Molecular Biology Education, 34, pp. 199–203.
Bagozzi, R. P. & Yi, Y. (1988), On the Evaluation of Structural Equation Models. Journal of Academy of Marketing Science, 16(1), 74-94.
Bandura, M. B. (1986). A. social foundations of thought and action: A social cognitive theory (pp.1-12). Prentice Hall, Englewood Cliffs, NJ: Prentice Hall.
Barbara, M. B.(2000). Structural equation modeling with AMOS: Basic concepts, applications, and programming. Mahwah, NJ: Lawrence Erlbaum Associates, Inc., Publishers.
Bennett, C. I. (1979). Individual differences and how teachers perceive them. The Social Studies, 70, 56-61.
Bostrom, R. P., Olfman, L., & Sein, M. K. (1990). The importance of learning style in end-user training. MIS Quarterly, 14(1), 101-119.
Canfield, A. A. (1988). Canfield learning styles inventory manuaul. LA: Western Psychological Services.
Chou. H., & Wang T. (2000). The influence of learning style and training method of self-efficacy and learning performance in WWW homepage design training. International Journal of Information management, 20, pp.455-472.
Chou, H. W. (2001) . Influences of cognitive style and training method on trainin effectiveness. Computers & Education, 37, pp.11–25.
Coggins, C. C. (1988). Preferred learning styles and their impact on completion of external degree programs. The american journal of distance education, 2(1), 25-37.
Crocker, L., & Algina, J., (1986). Introduction to classical and modern test theory.New York: Holt, Rinehart & Winston.
Davidson-Shivers, G . V., Nowlin, B., & Lanouette, M.(2002). Do multimedia lesson structure and learning styles influence undergraduate writing performance?. College Student Journal, 36(1), 20-32.
Davis, F. D. (1986). A technology acceptance model for empirically testing new end -user. Information system: theory and results. Unpublished doctoral dissertation thsis, Sloan school of management, MIT (Massachusetts Institute of Technology).
Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319-340.
Davis, F. D., Bagozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35(8), 982-1003.
Dunn, R., & Dunn, K. (1978). Teaching students through their individual learning styles. Reston. VA: Reston Publishing.
Efron, B., & R. J. Tibshirani(1986). Bootstrap method for standard errors, confidence intervals and other measures of statistical accuracy. Statistical Science, 1, pp.54-77.
Entwistle, N. J. (1981). Styles of learning and teaching. Chichester: John Wiley and Sons.
Federico Pat-Anthony (2000). Learning styles and student attitudes toward various aspects of network-based instruction. Computers in Human Behavior, 16, pp.359-379.
Fishbein, M., & Ajzen, I. (1975). Belief, Attitude, Intention and Behavior: An Introduction to Theory and Research Reading. MA: Addison-Wesley, pp.6, 302.
Fornell, C., & D. F. Larcker(1981). Evaluating structural equation models with unbervables and measurement error. Journal of Marketing Research, 18, pp.39-50.
Garger, S., & Guild, P. B. (1984). Learning styles: The crucial differences. Curriculum Review, pp.9-12.
Garner, I (2000). Problems and inconsistencies with Kolb's learning styles Kolb. Educational Psychology. 20(3), 341-348.
Golearn.gov (2009). Golearn Retrieved. June 6, 2009, from http://www. golearn.gov.
Gregorc, A. F. (1979). Learning teaching styles: Potent forces behind them. Educational Leadership. 36(4), 234-236.
Gregorc, A. F. (1985). Learning Styles: Differences which the profession must address. Reading through Content, pp.29-34.
Hair, J. F., William C. B. , Barry J. B., & Rolph E. A. (2009). Multivariate data analysis (7 nd Ed.). Englewood Cliffs, NJ. Prentice Hall.
Henderson, R., & Divett, M. J.(2003). Perceived usefulness, ease of use and electronic supermarket use. International. Journal of Human-Computer Studies, 59(3), 383-395.
Hong, K. S. (2002). Relationships between students’ and instructional variables with satisfaction and learning. Retrived Feb 28, 2009 from a Web-based course. Internet and Higher Educational, 5, pp.267-281.
Hunt, D. E. (1979). Learning style and student needs: An introduction to conceptual level. In National Association of Secondary School Principals (Ed.), Student learning styles: Diagnosing and prescribing programs. Reston, V.A.: Reston Publishing Company. Hu, P. J.-H., Chen, H., Hu, Larson & Butierez (2010). Law enforcement officers’ acceptance of advanced e-government technology: A survey study of COPLINK Mobile. Electronic Commerce Research and Applications. Retrieved Oct. 9, 2010, from http:// www.elsevier.com/locate/ecra.
Igbaria, M., Parasuraman, S., & Baroudi, J. (1996). A motivational model of microcomputer usage. Journal of Management Information Systems, 13(1), 127–143.
Kaiser, H. F.(1974). An index of factorial simplicity. Psychometrika, 39, pp.31-36.
Karmis, A., & Khan, B. K. (2009). Synthesizing Huber's problem solving and Kolb's learning cycle: A balanced approach to technical problem solving. Journal of Information Systems Education, 20 (1), 99-112 .
Kayes, D. C. (2005). Internal validity and reliability of Kolb’s learning style inventory. Journal of Business and Psychology. 20 (2), 249 – 257.
Keefe, J. W. (1988). Profiling and utilizing learning style. Reston, VA.: NASSP.
Keller, J. G. (2008). Questions first: Introducing critical thinking using the text analysis matrix (TAM). Journal of the Scholarship of Teaching and Learning, 8(2), 11-24.
Kim, H. J., & Pedersen, S. J. (2005). The Constraints and Possibilities of Working Memory in the Design of Learner-centered Web-delivered Learning Environment. Annual Proceedings. 2, pp .279-285.
Kline, R. B. (2005). Principles and practice of structure equation modeling (2nd ed.).New York: The Guilford Press.
Kolb, D. A.(1984). Experiential learning: Experience as the source of learning and development. Prentice-Hall, Inc., Englewood Cliffs, N. J.
Kolb A. Y. & Kolb D. A. (2005). The Kolb Learning Style Inventory, Version 3.1, 2005 Technical Specifications. Retrieved Aug 13, 2010, from http://www.whitewater-rescue.com/support/pagepics/lsitechmanual.pdf.
Kolb, D. A. (2006). Kolb learning styles. Retrieved Sep. 10, 2010, form http://www.businessballs.com/kolblearningstyles.htm.
Lee, M. G. (2001). Profiling students’ adaptation styles in Web-based learning, Computers & Education, 36, pp.121-132.
Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information and Management, 40, pp. 192-204.
Liu S., Liao H. , Pratt J. A. (2009). Impact of media richness and flow on e-learning technology acceptance. Computers & Education, 52, 599–607.
MacCallum, R. C., M., Roznowski, M., Mar, C. & J. V. Reith (1994). Alternative strateiges for cross-validation of covariance structure models, Multivariate Behavioral Research, 29(1), 1-32.
MacCallum, R. C., Browne, M. W., & Sugawara, H. W (1996). Power analysis and determination of sample size for covariance structure modeling. Psychological Methods, 7, pp.130-149.
Mackeracher, D. (2004). Making sense of adult learning ( 2nd Ed.). Canada: University of Toronto Press.
Money W. (2004). Application of the technology acceptance model to a knowledge management system. Proceedings of the 37th Hawaii International Conference on System Sciences. Hawaii: IEEE.
Moon, J. W., & Kim, Y. G. (2001). Extending the TAM for a world-wide-web context. Information and Management, 38(4), 217-230.
Moore, G.C., & Benbasat, I. (1991), Development of an instrument to measure the perceptions of adopting an information technology innovation. Information Systems Research, 2(3), 192-222.
Muneer M. A., David M. & Carmel de N.(2009). International review of research in open and distance learning. Reports – evaluative. Journal Articles. 10(2). ISSN: 1492-3831
Musong, J. N. (1994). A qualitative study of problems female undergraduate adult returning students encounter at the university of Maryland at college park. doctoral dissertation, university of Maryland college park, 1995. Dissertation Abstracts International, 56(4), 1214.
Nunnally, Jim C. (1978). Psychometric theory(2nd Ed.) NY: McGraw-Hill.
Omur A. & Tiffany A. K.(2005). Investigating the relationships among instructional strategies and learning styles in online environments. Annual Proceedings. 2, pp.10-17.
Pask, G. (1968). A cybernetic model for some types of learning and mentation. London: Gordon and Breach.
Pinar, Dogru-Atay & Ceren, Tekkaya (2008). Promoting students’ learning in genetics with the learning cycle. The Journal of Experimental Education, 76(3), 259–280.
Rafe, G., & Manley, J. H. (1997). Learning style and instructional methods in a graduate level engineering program delivered by video teleconferencing technology. IEEE 1997 Frontiers in Education Conference. 1607-1612.
Reynolds, P. (2008). Yearning for e-learning? The pros and cons of the virtual classroom for your call center. Customer Inter action Solutions, 27(1), 36-37.
Roberts, P., & Henderson, R. (2000). Information technology acceptance in a sample of government employees: a test of the technology acceptance model. Interacting with Computers, 12, 427–443. Retrieved Oct. 9, 2010, from http://www.elsevier.com/locate/intcom.
Saadē, R., & Bahli, B (2005). The impact of cognitive absorption on perceived usefulness and perceived ease of use in on-line learning: an extension of technology acceptance model. Information & Management, 42(2), 317-327.
Sang, S., & Lee, J.-D. (2009). A Conceptual Model of e-Government Acceptance in Public Sector. 2009 Third International Conference on Digital Society. Retrieved Oct. 9, 2010, from http://portal.acm.org/citation.cfm?id=1511467.
Sein, M. K., & Robey, D. (1991). Learning style and the efficacy of computer training methods. Perceptual and Motor skills.
Sher, P., & Yang, P. Y. (2005). The effect of innovative capabilities and R & D clustering on firm performance: the evidence of Taiwan’s semiconductor industry. Technovation, 25, pp.33-43.
Shih, M., Feng, J., & Tsai, C. C. (2008). Research and trends in the field of e-learning from 2001 to 2005: A content analysis of cognitive studies in selected journals. Computers and Education, 51(2), 955-967.
Simonson, M., Smaldino, S., Albright, M. & Zvacek, S.(2000). Teaching and learning at a distance: Foundations of distance, Upper Saddle River, NJ:Merrill.
Smith, P. L. & Kolb, D. A.(1996). User’s guide for the learning style inventory: A manual for teachers and trainers. Boston: Mcber and Co.
Straub, D., Limayem, M., & Karahanna-Evaristo, E.(1995). Measuring system usage: implications for IS theory testing. Management Science,. 41(8), 1328–1342, August.
Szajna, B. (1996). Empricial evaluation of the revised technology Acceptance Model. Management Science, 42(1), 85-92.
Taylor, S. & Todd, P. A. (1995). Accessing IT usage: The role of prior experience. MIS Quarterly, 19(4), 561-570.
Thompson, R. L., Higgins, C. A., & Howell, J. M. (1991). Personal computing: Toward a conceptual model of utilization. MIS Quarterly, 15(Jan), 125-143.
Thurmond, V. A., Wambach, K., & Connors, H. R. (2002). Evaluation of student satisfaction: Determining the impact of a web by controlling for student characteristics. American Journal of Distance Education, 16, pp.169-189.
Torkzadeh, G., Koufteros, X.,& Pflughoeft K. (2003). Confirmatory analysis of computer self-efficacy. Structural Equation Modeling, 10(2): 263-275.
Vathanophas, V., Krittayaphongphun, N.,& Klomsiri , C. (2006). Technology acceptance of internet toward e-governmwnt initiative in naval finance department of royal Thai navy. Proceedings of the eGovernment Workshop '06.
Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186-204.
Venkatesh, V., Morris, G. M., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
Wierstra, R. F. A., & DeJong, J.A. (2002). A scaling theoretical evaluation of Kolb’s learning style inventory. In Valcke, M., and Gombeir, D., (Eds.). Learning styles: Reliability and validity, 431-440. Proceedings of the seventh annual European learning styles information network, 26-28 June. Ghent, Belgium: University of Ghent.
Wixom, B. H., & Todd, P.A. (2005). A theoretical integration of user satisfaction and technology acceptance. Information Systems Research, 16(1), 85-102.