簡易檢索 / 詳目顯示

研究生: 吳誌中
Zhi-Zhong Wu
論文名稱: N型Bi1.5Sb0.5Te3-xSex與P型Bi0.5Sb1.5Te3-xSex熱電材料製作與物性研究
Fabrication and Characterization of N-type Bi1.5Sb0.5Te3-xSex and P-type Bi0.5Sb1.5Te3-xSex Thermoelectric Materials
指導教授: 陳洋元
Chen, Yang-Yuan
楊遵榮
Yang, Tzuen-Rong
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 65
中文關鍵詞: 熱電材料熱電優質係數(ZT)
英文關鍵詞: thermoelectric materials, figure-of-merit (ZT)
論文種類: 學術論文
相關次數: 點閱:257下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   碲化鉍 (Bi2Te3) 與其合金是可運用在200-500 K重要的熱電材料,而其熱電轉換效率或熱電優質係數可藉由參雜成分或參雜比例提升與優化。為了希望ZT能在高溫區有較最大轉換效率應用於廢熱回收,我們利用硒取代Bi0.5Sb1.5Te3-xSex系統中之碲來提升其在高溫區的熱電轉換效率係數。研究中,當硒參雜量增加時伴隨著電阻率、西貝克係數與熱傳導係數呈現有系統地改變,本研究結果發現在480K,x=0.5時有熱電優質係數0.79相較於無參雜的Bi0.5Sb1.5Te3提高了11%的熱電轉換效率。
      藉由相同方法利用硒取代N型熱電材料Bi1.5Sb0.5Te3-xSex系統中之碲,並且發現熱傳導隨著硒的取代量增加而顯著的降低,因此我們成功的藉由熔煉與SPS燒結製作之樣品在500 K時將熱電優質係數由Bi1.5Sb0.5Te3 的0.13提高至Bi1.5Sb0.5TeSe2的0.55。

      Bismuth telluride (Bi2Te3) and its alloys are the most well-known thermoelectric (TE) materials for heat-electricity conversion application in the temperature range 200-500 K. Their figure of merit ZT maximum can be tuned to higher or lower temperature by changing doping level or composition. With an attempt to tune ZT maximum to higher temperatures for waste heat recovery. We used selenium to substitute tellurium in Bi0.5Sb1.5Te3-xSex system. As selenium content increases, all the electrical, Seebeck coefficient, and thermal conductivity change systematically. ZT maximum of P-type Bi0.5Sb1.5Te3-xSex with x=0.5 is 0.79 at 480 K, the value is about 11% larger than that of pure Bi0.5Sb1.5Te3 at same temperature.
    Following this approach, the selenium substitution in N-type Bi1.5Sb0.5Te3 was also demonstrated. Thermal conductivity of Bi1.5Sb0.5Te3-xSex significantly decreases with the Se content increase. Consequently the ZT maximum increases from 0.13 of Bi1.5Sb0.5Te3 to 0.55 of Bi1.5Sb0.5TeSe2 at 500 K by combining melting and spark plasma sintering fabrications.

    摘要 i Abstract ii Acknowledgement iii Table of Contents iv List of Figure vii List of Tables ix Chapter 1 Introduction 1 1.1 Thermoelectricity 1 1.2 Motivation 2 Chapter 2 Thermoelectricity and Experimental Setup 5 2.1 Thermoelectric Effects 5 2.1.1 Seebeck Effect 5 2.1.2 Peltier Effect 6 2.1.3 Thomson Effect 7 2.1.4 The Device Efficiency and Figure-of-Merit 8 2.2 Crystal Growth and Bulk Fabrications 11 2.2.1 Solid-State Reaction 11 2.2.2 Bridgman-Stockbarger Method 15 2.2.3 Hot-Press 15 2.2.4 Spark Plasma Sintering 16 2.3Instruments 18 2.3.1 X-Ray Diffraction 21 2.3.2 Thermal Diffusivity 24 2.3.3 ZEM-3 26 2.3.4 Archimedes’ Principle - Density Measurement 28 2.3.5 Dulong-Pertit Law and Specific Heat 30 Chapter 3 Result and Discussion 33 3.1 Crystal Structure 33 3.1.1 XRD Spectrum 33 3.1.2 EDX Analysis 37 3.1.2.1 N-Type Bi1.5Sb0.5Te3-xSex Fabricated by SPS 37 3.1.2.1.1 Bi1.5Sb0.5Te3 37 3.1.2.1.2 Bi1.5Sb0.5Te2.5Se0.5 37 3.1.2.1.3 Bi1.5Sb0.5Te2Se 37 3.1.2.1.4 Bi1.5Sb0.5Te1.5Se1.5 38 3.1.2.1.5 Bi1.5Sb0.5TeSe2 38 3.1.2.1.6 Bi1.5Sb0.5Te0.5Se2.5 38 3.1.2.1.7 Bi1.5Sb0.5Se3 39 3.1.2.2 P-Type Bi0.5Sb1.5Te3-xSex Fabricated by Hot-Press 39 3.1.2.2.1 Bi0.5Sb1.5Te3 39 3.1.2.2.2 Bi0.5Sb1.5Te2.5Se0.5 39 3.1.2.2.3 Bi0.5Sb1.5Te2Se 40 3.1.2.2.4 Bi0.5Sb1.5Te1.5Se1.5 40 3.1.2.2.5 Bi0.5Sb1.5TeSe2 40 3.1.2.2.6 Bi0.5Sb1.5Te0.5Se2.5 41 3.1.2.2.7 Bi0.5Sb1.5Se3 41 3.1.2.3 P-Type Bi0.5Sb1.5Te3-xSex Fabricated by SPS 41 3.1.2.2.1 Bi0.5Sb1.5Te3 41 3.1.2.2.2 Bi0.5Sb1.5Te2.5Se0.5 42 3.1.2.2.3 Bi0.5Sb1.5Te2Se 42 3.1.2.2.4 Bi0.5Sb1.5Te1.5Se1.5 42 3.1.2.2.5 Bi0.5Sb1.5TeSe2 43 3.1.2.2.6 Bi0.5Sb1.5Te0.5Se2.5 43 3.1.2.2.7 Bi0.5Sb1.5Se3 43 3.2 N-Type Bi1.5Sb0.5Te3-xSex 44 3.2.1 Electrical Properties 44 3.2.2 Thermal Properties 47 3.2.2.1 Density 47 3.2.2.2Thermal Conductivity 47 3.2.3 Figure of Merit (ZT) 49 3.3 P-Type Bi1.5Sb0.5Te3-xSex 50 3.3.1 Electrical Properties 50 3.3.2 Thermal Properties 54 3.3.2.1 Density 54 3.3.2.2 Thermal Conductivity 54 3.3.3 Figure of Merit 57 3.4 P-Type Bi1.5Sb0.5Te3-xSex Fabricated by SPS 58 3.4.1 Electrical Properties 58 3.4.2 Thermal Properties 60 3.4.2.1 Density 60 3.4.2.2 Thermal Conductivity 61 3.4.3 Figure of Merit 62 Chapter 4 Conclusions 63 Reference 65 List of Figure Chapter 2 Fig. 2.1.1 Schematic of basic thermocouple Seebeck effect occurs between the junctions of two dissimilar materials when the temperature gradient exist. 6 Fig. 2.1.2 Peltier effect. When the different materials circuit injected an electrical current, heat is rejected or absorbed at junctions between materials a and b. 7 Fig. 2.1.3 The Seebeck circuit configured as a generator. 9 Fig. 2.2.1 Weight of elements were calculated. 11 Fig. 2.2.2 Vapor pressure of bismuth and antimony. 13 Fig. 2.2.3 Vapor pressure of tellurium and selenium. 13 Fig. 2.2.4 Vacuum system (left) and diagram of tube sealed (right). 14 Fig. 2.2.5 Temperature profile for N-type solid-state reaction. 14 Fig. 2.2.6 Temperature profile for P-type solid-state reaction. 14 Fig. 2.2.7 Schematic diagram of SPS. 17 Fig. 2.2.8 Photo images of die and sample. 17 Fig. 2.3.1 Bragg’s diffraction. 22 Fig. 2.3.2 Measured parts of XRD, left: diagram; right real: photo. 23 Fig. 2.3.3 Diagram of laser excited in LFA. 25 Fig. 2.3.4 Real setup of ULVAC-RIKO ZEM-3 measured part (upper) Diagram of ULVAC-RIKO ZEM-3 measured part (lower). 27 Fig. 2.3.5 Photo images of Density Measurement. 29 Chapter 3 Fig. 3.1.1 X-ray spectrum of Bi1.5Sb0.5Te3-xSex, x = 0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0. The structure of x < 3.0 is rhombohedral and x = 3.0 is rhombohedral + orthorhombic mixing structure. 34 Fig. 3.1.2 X-ray spectrum of Bi1.5Sb0.5Te3-xSex, 26 ~ 30 degrees. 34 Fig. 3.1.3 X-ray spectrum of Bi0.5Sb1.5Te3-xSex, x = 0, 0.5, 1.0, 1.5, 2.0, 2.5 and 3.0. The structure of x=3.0 is orthorhombic, x=2.5 is rhombohedral + orthorhombic mix-phase and x < 2.0 is rhombohedral structure. 35 Fig. 3.1.4 X-ray spectrum of Bi0.5Sb1.5Te3-xSex, 26 ~ 30 degree. 35 Fig. 3.1.5 The phase diagram of Bi, Sb, Te, and Se at room temperature. 36 Fig. 3.1.6 The crystal structures of rhombohedral (left) and orthorhombic (right). 36 Fig. 3.2.1 The temperature dependence of Electrical resistivity of Bi1.5Sb0.5Te3-xSex. 44 Fig. 3.2.2 The temperature dependences of Seebeck coefficient of Bi1.5Sb0.5Te3-xSex. 45 Fig. 3.2.3 Power factor versus temperature of Bi1.5Sb0.5Te3-xSex. 46 Fig. 3.2.4 The temperature dependences of of N-type Bi1.5Sb0.5Te3-xSex. 47 Fig. 3.2.6 The Figure-of-Merit of Bi1.5Sb0.5Te3-xSex as a function of temperature. 49 Fig. 3.3.1 Electrical resistivity versus temperature of Bi0.5Sb1.5Te3-xSex. 50 Fig. 3.3.2 Electrical resistivity versus composition content x at 300 K of Bi0.5Sb1.5Te3-xSex. 51 Fig. 3.3.3 Seebeck coefficient versus temperature of Bi0.5Sb1.5Te3-xSex. 52 Fig. 3.3.5 Thermal conductivity versus temperature of P-type Bi0.5Sb1.5Te3-xSex. 54 Fig. 3.3.6 Thermal conductivity versus Se content x at 300K of Bi0.5Sb1.5Te3-xSex. 55 Fig. 3.3.7 Lattice thermal conductivity versus temperature of Bi0.5Sb1.5Te3-xSex. 56 Fig. 3.3.8 The Figure-of-Merit versus temperature of Bi0.5Sb1.5Te3-xSex. 57 Fig. 3.4.1 Electrical resistivity versus temperature of Bi0.5Sb1.5Te3-xSex fabricated by SPS process. 58 Fig. 3.4.2 Seebeck coefficient versus temperature of Bi0.5Sb1.5Te3-xSex fabricated by SPS process. 59 Fig. 3.4.3 Power factor versus temperature of Bi0.5Sb1.5Te3-xSex fabricated by SPS process. 60 Fig. 3.4.4 Thermal conductivity versus temperature of P-type Bi0.5Sb1.5Te3-xSex fabricated by SPS process 61 Fig. 3.4.5 Figure-of-Merit versus temperature of Bi0.5Sb1.5Te3-xSex fabricated by SPS process. 62 List of Tables Chapter 2 Table 2.1 Flow chart of experiment. 19 Table 2.2 Equipments used in this investigation. 20 Table 2.3 Description with symbol. 29 Chapter 3 Table 3.1 EDX analysis of Bi1.5Sb0.5Te3 37 Table 3.2 EDX analysis of Bi1.5Sb0.5Te2.5Se0.5 37 Table 3.3 EDX analysis of Bi1.5Sb0.5Te2Se 37 Table 3.4 EDX analysis of Bi1.5Sb0.5Te1.5Se1.5 38 Table 3.5 EDX analysis of Bi1.5Sb0.5TeSe2 38 Table 3.6 EDX analysis of Bi1.5Sb0.5Te0.5Se2.5 38 Table 3.7 EDX analysis of Bi1.5Sb0.5Se3 39 Table 3.8 EDX analysis of Bi0.5Sb1.5Te3 39 Table 3.9 EDX analysis of Bi0.5Sb1.5Te2.5Se0.5 39 Table 3.10 EDX analysis of Bi0.5Sb1.5Te2Se 40 Table 3.11 EDX analysis of Bi0.5Sb1.5Te1.5Se1.5 40 Table 3.12 EDX analysis of Bi0.5Sb1.5TeSe2 40 Table 3.13 EDX analysis of Bi0.5Sb1.5Te0.5Se2.5 41 Table 3.14 EDX analysis of Bi0.5Sb1.5Se3 41 Table 3.15 EDX analysis of Bi0.5Sb1.5Te3 41 Table 3.16 EDX analysis of Bi0.5Sb1.5Te2.5Se0.5 42 Table 3.17 EDX analysis of Bi0.5Sb1.5Te2Se 42 Table 3.18 EDX analysis of Bi0.5Sb1.5Te1.5Se1.5 42 Table 3.19 EDX analysis of Bi0.5Sb1.5TeSe2 43 Table 3.20 EDX analysis of Bi0.5Sb1.5Te0.5Se2.5 43 Table 3.21 EDX analysis of Bi0.5Sb1.5Se3 43 Table 3.22 The density of N-type Bi1.5Sb0.5Te3-xSex. 47 Table 3.23 The density of P-type Bi0.5Sb1.5Te3-xSex. 54 Table 3.24 The density of P-type Bi0.5Sb1.5Te3-xSex by SPS process. 60

    [1] D.M. Rowe, CRC Press, Boca Raton, Chapter 37 (2006).
    [2] W. J. Xie, S. Y. Wang, S. Zhu, J. He, X. F. Tang, Q. J. Zhang and T. M. Tritt, J. Mater. Sci. 48 2745 (2013).
    [3] W. J. Xie, X. F. Tang, Y. G. Yan, Q. J. Zhang and T. M. Tritt, Appl. Phys. Lett. 94 102111 (2009)
    [4] X. Yan, B. Poudel, Y. Ma, W. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen and Z. Ren, Nano Lett. 10 3373 (2010).
    [5] W. S. Liu, Q. Y. Zhang, Y. C. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Z. Wang, G. Chen, Z. F. Ren, Adv. Energ. Mater. 1 577 (2011).
    [6]Jeff Snyder, nature materials Vol 7 February 2008.
    [7] D.M. Rowe, CRC Press, Boca Raton, Chapter 27 (2006).
    [8] W. J. Xie, X. F. Tang, Y. G. Yan, Q. J. Zhang, T. M. Tritt, J. Appl. Phys. 105 113713 (2009).
    [9] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature 413, 597 (2001).
    [10] W. G. Lu, Y. Ding, Y. X. Chen, Z. L. Wang, and J. Y. Fang, J. Am, Chem. Soc. 127, 10112 (2005).
    [11] A. Purkayastha, F. Lupo, S. Kim, T. Borca-Tasciuc, and G. Ramanath, Adv. Mater. 18, 496-500 (2006).
    [12] D.M. Rowe, CRC Press, Boca Raton, Chapter 1 (2006).
    [13] M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren and G. Chen, Energy Environ. Sci. 5, 5147-5162 (2012).
    [14] D.M. Rowe, CRC Press, Boca Raton, Chapter 1 (2006).
    [15] R.E. Honig, “Vapor Pressure Data for the More Common Elements”, RCA Review 18 195-204 (1957).
    [16] Charles Kittel, “Introduction to Solid State Physics Eight Edition” Wiley; 8th Edition, 2004, Chapter 2
    [17] NETZSCH business menu, LFA457.
    [18] 蔡明原, ”PbTe、Pb0.78Sn0.22Te與Ge0.5Pb0.25Sn0.25Te的熱電物性研究”, 臺灣師範大學, 碩士論文, 2011
    [19] 陳柏志,”粉末粒徑與燒結溫度對Bi0.5Sb1.5Te3化合物熱電特性影響之研究”,清華大學,碩士論文, 2008
    [20] Charles Kittel, “Introduction to Solid State Physics Eight Edition” Wiley; 8th Edition, 2004, Chapter 5
    [21] Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. B 84, 165311 (2011).

    下載圖示
    QR CODE