研究生: |
吳誌中 Zhi-Zhong Wu |
---|---|
論文名稱: |
N型Bi1.5Sb0.5Te3-xSex與P型Bi0.5Sb1.5Te3-xSex熱電材料製作與物性研究 Fabrication and Characterization of N-type Bi1.5Sb0.5Te3-xSex and P-type Bi0.5Sb1.5Te3-xSex Thermoelectric Materials |
指導教授: |
陳洋元
Chen, Yang-Yuan 楊遵榮 Yang, Tzuen-Rong |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 65 |
中文關鍵詞: | 熱電材料 、熱電優質係數(ZT) |
英文關鍵詞: | thermoelectric materials, figure-of-merit (ZT) |
論文種類: | 學術論文 |
相關次數: | 點閱:257 下載:7 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
碲化鉍 (Bi2Te3) 與其合金是可運用在200-500 K重要的熱電材料,而其熱電轉換效率或熱電優質係數可藉由參雜成分或參雜比例提升與優化。為了希望ZT能在高溫區有較最大轉換效率應用於廢熱回收,我們利用硒取代Bi0.5Sb1.5Te3-xSex系統中之碲來提升其在高溫區的熱電轉換效率係數。研究中,當硒參雜量增加時伴隨著電阻率、西貝克係數與熱傳導係數呈現有系統地改變,本研究結果發現在480K,x=0.5時有熱電優質係數0.79相較於無參雜的Bi0.5Sb1.5Te3提高了11%的熱電轉換效率。
藉由相同方法利用硒取代N型熱電材料Bi1.5Sb0.5Te3-xSex系統中之碲,並且發現熱傳導隨著硒的取代量增加而顯著的降低,因此我們成功的藉由熔煉與SPS燒結製作之樣品在500 K時將熱電優質係數由Bi1.5Sb0.5Te3 的0.13提高至Bi1.5Sb0.5TeSe2的0.55。
Bismuth telluride (Bi2Te3) and its alloys are the most well-known thermoelectric (TE) materials for heat-electricity conversion application in the temperature range 200-500 K. Their figure of merit ZT maximum can be tuned to higher or lower temperature by changing doping level or composition. With an attempt to tune ZT maximum to higher temperatures for waste heat recovery. We used selenium to substitute tellurium in Bi0.5Sb1.5Te3-xSex system. As selenium content increases, all the electrical, Seebeck coefficient, and thermal conductivity change systematically. ZT maximum of P-type Bi0.5Sb1.5Te3-xSex with x=0.5 is 0.79 at 480 K, the value is about 11% larger than that of pure Bi0.5Sb1.5Te3 at same temperature.
Following this approach, the selenium substitution in N-type Bi1.5Sb0.5Te3 was also demonstrated. Thermal conductivity of Bi1.5Sb0.5Te3-xSex significantly decreases with the Se content increase. Consequently the ZT maximum increases from 0.13 of Bi1.5Sb0.5Te3 to 0.55 of Bi1.5Sb0.5TeSe2 at 500 K by combining melting and spark plasma sintering fabrications.
[1] D.M. Rowe, CRC Press, Boca Raton, Chapter 37 (2006).
[2] W. J. Xie, S. Y. Wang, S. Zhu, J. He, X. F. Tang, Q. J. Zhang and T. M. Tritt, J. Mater. Sci. 48 2745 (2013).
[3] W. J. Xie, X. F. Tang, Y. G. Yan, Q. J. Zhang and T. M. Tritt, Appl. Phys. Lett. 94 102111 (2009)
[4] X. Yan, B. Poudel, Y. Ma, W. Liu, G. Joshi, H. Wang, Y. Lan, D. Wang, G. Chen and Z. Ren, Nano Lett. 10 3373 (2010).
[5] W. S. Liu, Q. Y. Zhang, Y. C. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Z. Wang, G. Chen, Z. F. Ren, Adv. Energ. Mater. 1 577 (2011).
[6]Jeff Snyder, nature materials Vol 7 February 2008.
[7] D.M. Rowe, CRC Press, Boca Raton, Chapter 27 (2006).
[8] W. J. Xie, X. F. Tang, Y. G. Yan, Q. J. Zhang, T. M. Tritt, J. Appl. Phys. 105 113713 (2009).
[9] R. Venkatasubramanian, E. Siivola, T. Colpitts, B. O’Quinn, Nature 413, 597 (2001).
[10] W. G. Lu, Y. Ding, Y. X. Chen, Z. L. Wang, and J. Y. Fang, J. Am, Chem. Soc. 127, 10112 (2005).
[11] A. Purkayastha, F. Lupo, S. Kim, T. Borca-Tasciuc, and G. Ramanath, Adv. Mater. 18, 496-500 (2006).
[12] D.M. Rowe, CRC Press, Boca Raton, Chapter 1 (2006).
[13] M. Zebarjadi, K. Esfarjani, M. S. Dresselhaus, Z. F. Ren and G. Chen, Energy Environ. Sci. 5, 5147-5162 (2012).
[14] D.M. Rowe, CRC Press, Boca Raton, Chapter 1 (2006).
[15] R.E. Honig, “Vapor Pressure Data for the More Common Elements”, RCA Review 18 195-204 (1957).
[16] Charles Kittel, “Introduction to Solid State Physics Eight Edition” Wiley; 8th Edition, 2004, Chapter 2
[17] NETZSCH business menu, LFA457.
[18] 蔡明原, ”PbTe、Pb0.78Sn0.22Te與Ge0.5Pb0.25Sn0.25Te的熱電物性研究”, 臺灣師範大學, 碩士論文, 2011
[19] 陳柏志,”粉末粒徑與燒結溫度對Bi0.5Sb1.5Te3化合物熱電特性影響之研究”,清華大學,碩士論文, 2008
[20] Charles Kittel, “Introduction to Solid State Physics Eight Edition” Wiley; 8th Edition, 2004, Chapter 5
[21] Z. Ren, A. A. Taskin, S. Sasaki, K. Segawa, and Y. Ando, Phys. Rev. B 84, 165311 (2011).