簡易檢索 / 詳目顯示

研究生: 林則言
論文名稱: 可作為敏染太陽能電池之雙錨基咪唑光敏染料
Imidazole-based Sensitizers Containing Two Anchors for Dye-sensitized Solar Cells
指導教授: 林建村
Lin, Jiann-T'Suen
葉名倉
Yeh, Ming-Chang
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 93
中文關鍵詞: 染料敏化太陽能電池雙錨基共吸附咪唑太陽能電池
英文關鍵詞: DSSC, dianchor, co-adsorbent, imidazole, solar cell
論文種類: 學術論文
相關次數: 點閱:125下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文開發了引入imidazole於電子予體與電子受體間之共軛鏈的光敏染料,並製成染敏型太陽能電池。利用carbazole或arylamine為電子予體,引入於imidazole之2號碳原子,並引入2-cyanoacetic acid於imidazole之4、5號碳原子,作為電子受體兼錨基。這樣的雙錨基分子設計可能有利於分子的光收成與增進光激發後分子注入電子於之TiO2能力。開發染料分子所涉及的重要有機反應包括Debus-Radziszewski imidazole synthesis、Stille Coupling與Knoevenagel condensation。新染料分子之物理特性並經UV-Vis.吸收光譜、微分脈衝伏安法,測量其光物理及電化學鑑定。這些染料分子在300−600 nm波段有高的分子吸收消光係數。由於明顯的分子堆疊,導致太陽能電池的效率只是中等。加入CDCA (chenodeoxycholic acid)為共吸附劑後效率可提升42–61%。最佳元件(加入50 mM CDCA)效率可達4.55%,為N719建構標準元件之61%。

    Serious new organic dyes containing an imidazole entity in the conjugated spacer between the electron donor and electron acceptor have been synthesized for dye-sensitized solar cell (DSSC) applications. The carbazole or arylamine donor was incorporated at the C-2 of the imidazole entity, and the the two 2-cyanoacetic acid acceptors (as well as anchor) were incorporated at C-4 and C-5 of the imidazole entity, respectively. Molecules with two anchors may be beneficial to light-harvesting and electron injection from the photolytically excited dye to the TiO2. The key reactions involve in the preparation of the dyes include Debus-Radziszewski imidazole synthesis, StilleCoupling and Knoevenagel condensation. The physical properties of the new dyes were characterized by UV-Vis absorption spectra, cyclic voltammetry. The dyes exhibit optical absorption from 300−600 nm with high molar extinction coefficients. The conversion efficiencies of DSSCs fabricated from the dyes are moderate due to serious dye aggregation. Upon addition of CDCA co-adsorbents, the optimized cell efficiencies were improved by 42–61%. The best efficiency of the cell (with addition of 50 mM CDCA) was 4.55%, which reached 61% of N719-based DSSC fabricated and measured under similar condition.

    謝誌 ii 摘要 iv Abstract v 目錄 vi 圖目錄 viii 表目錄 x 流程目錄 xi 附圖目錄 xii 第一章緒論 1 1-1前言 1 1-2太陽能電池介紹 3 1-2-1矽晶類太陽能電池 4 1-2-2化合物半導體電池 4 1-2-3染料敏化太陽能電池(Dye-Senstitized Solar Cell,DSSC) 4 1-3染料敏化太陽能電池反應機制 7 1-4太陽能電池參數介紹 8 1-5研究動機 10 第二章 實驗方法與過程說明 19 2-1實驗儀器 19 2-2 實驗藥品 20 2-3實驗步驟 23 第三章結果與討論 45 3-1合成流程 45 3-2本研究實驗反應涉及的主要反應 51 3-2-1 Stille coupling reaction 51 3-2-2 Hartwig-Buchwald coupling reaction 52 3-2-3 Debus-Radziszewski imidazole synthesis 53 3-2-4 Knoevenagel condensation 53 3-3光物理性質 54 3-4電化學性質 57 3-5 染料敏化太陽能電池元件組裝 60 3-6元件效率 62 3-7理論計算 68 3-8 結論 77 參考文獻 78 附圖 82

    1. M. Grätzel, Inorg. Chem. 2005, 44, 6841.
    2. H. Shirakawa; C. K. Chiang; C. R. Fincher; Y. W. Park; A. J. Heeger; E. J. Louis; S. C. Gau; A. G. MacDiarmid, Phys. Rev. Lett. 1977, 39, 1098.
    3. X. Peng; M. C. Schlamp; A. Kadavanich; A. P. Alivisatos, J. Am. Chem. Soc. 1997, 119, 7019.
    4. S. E. Shaheen; C. J. Brabec; N. S. Sariciftci; F. Padinger; T. Fromherz; J. C. Hummelen, Appl. Phys. Lett. 2001, 78, 841
    5. 郭明村, 薄膜太陽能電池發展近況。工業材料雜誌2003, 150.
    6. H. Tsubomura; M. Matsumura; Y. Nomura; T. Amamiya, Nature 1976, 261, 402.
    7. B. O. Regan; M. Grätzel, Nature 1991, 353, 737.
    8. M. K. Nazeeruddin; A. Kay; L. Rodicio; R. Humphry-Baker; E. Müller; P. Liska; N. Vlachopoulos; M. Grätzel, J. Am. Chem. Soc. 1993, 115, 6382.
    9. M. K. Nazeeruddin; P. Péchy; T. Renouard; S. M. Zakeeruddin; R. Humphrey-Baker; P. Comte; P. Liska; L. Cevey; E. Costa; V. Shklover; L. Spiccia; G. B. Deacon; C. A. Bignozzi; M. Grätzel, J. Am. Chem. Soc. 2001, 123, 1613.
    10. A. Yella; H. W. Lee; H. N. Tsao; C. Yi; A. K. Chandiran; Md.Khaja Nazeeruddin; E. W. G. Diau; C. Y. Yeh; S. M Zakeeruddin; M. Grätzel, Science, 2011, 334, 629.
    11. M. Zhang; Y. Wang; M. Xu; W. Ma; R. Li; P. Wang, Energy Environ. Sci., 2013, 6, 2944.
    12. H. J. Kim; Y. C. Kim; J. T. Hong; M. J. Kim; H. W. Seo; J. W. Park; J. Y. Choi, Journal of Electrical Engineering & Technology, 2007, 2, 513.
    13. M. Grätzel, Nature, 2001, 414, 338.
    14. (a) M. Velusamy; K. R. Justin Thomas; Lin, J. T.; Hsu, Y.-C.; Ho, K.-C. Org. Lett. 2005, 7, 1899. (b) K. R. J. Thomas; J. T. Lin; Y. C. Hsu; K. C. Ho; Chem. Commun. 2005, 4098. (c) M. Velusamy; Y. C. Hsu; J. T. Lin; C. W. Chang; C. P. Hsu, Chem. Asian J. 2010, 5, 87. (c) C. H. Chen; Y. C. Hsu; H. H. Chou; K. R. Justin Thomas; J. T. Lin; C. P. Hsu, Chem. Eur. J. 2010, 16, 3184. (d) J. T. Lin; P. C. Chen; Y. S. Yen; Y. C. Hsu; H. H. Chou; M. C. P. Yeh, Org. Lett. 2009, 11, 97. (e) M. S. Tsai; Y. C. Hsu; J. T. Lin; H. C. Chen; C. P. Hsu, J. Phys. Chem. C 2007, 111, 18785. (f) K. R. Justin Thomas; Y. C. Hsu; J. T. Lin; K. M. Lee; K. C. Ho; C. H. Lai; Y. M. Cheng; P. T. Chou, Chem. Mater.2008, 20. 1830. (g) H. Y. Yang; Y. S. Yen; Y. C. Hsu; H. H. Chou ; J. T. Lin, Org. Lett. 2010, 12, 16. (h) S. T. Huang; Y. C. Hsu; Y. S. Yen; H. S. Chou; J. T. Lin; C. W. Chang; C. P. Hsu; C. T. Tasi; D. J. Yin, J. Phys. Chem. C. 2008, 112, 19739. (i) Y. S. Yen; Y. C. Hsu; J. T. Lin; C. W. Chang; C. P. Hsu; D. J. Yin, J. Phys. Chem. C. 2008, 112, 12557.
    15. A. Abbotto; N. Manfredi; C. Marinzi; F. D. Angelis; E. Mosconi; J. H. Yum; Z. Xianxi; M. K. Nazeeruddin; M. Grätzelc, Energy & Environmental Science 2009, 2, 1094.
    16. H. J. Joa; Y. C. Choib; J. H. Ryuc; J. H. Kangc; N. K. Parkc; D. K. Leeb; J. H. Kima, Mol. Cryst. Liq. Cryst. 2010, 532, 55.
    17. S. P. Singh; M. S. Roy; K. R. Justin Thomas; S. Balaiah; K. Bhanuprakash; G. D. Sharma, J. Phys. Chem. C. 2012, 116, 5941.
    18. M. Papanastasiou; N. S. Allen; A. McMahon; L. C. A. Naegel; M. Edge; S. Protopappas; Dye Pigm. 2012, 92, 1132.
    19. (a) S. S. Park; Y. S. Won; Y. C. Choi; J. H. Kim, Energy Fuels, 2009, 23, 3732, (b) Y. S. Yang; H. D. Kim; J. H. Ryu; K. K. Kim; S. S. Park; K. S. Ahn; J. H. Kim, Synth. Metal. 2011, 161, 850.
    20. D. Cao; J. Peng; Y. Hong; X. Fang; L. Wang; H. Meier, Org. lett. 2011, 13, 1610.
    21. H. Shang; Y. Luo; X. Guo; X. Huang; X. Zhan; K. Jiang; Q. Meng, Dye Pigm. 2010, 87, 249.
    22. X. Jiang; K. Martin Karlsson; E. Gabrielsson; E. M. J. Johansson; M. Quintana; M. Karlsson; L. Sun; G. Boschloo; A. Hagfeldt, Adv. Funct. Mater. 2011, 21, 2944.
    23. M. S. Tsai; Y. C. Hsu; J. T. Lin; H. C. Chen; C. P. Hsu, J. Phys. Chem. C 2007, 111, 18785.
    24. M. Velusamy; Y. C. Hsu; J. T. Lin; C. W. Chang; C. P. Hsu Chem. Asian J. 2010, 5, 87.
    25. D. Kumar; K. R. Justin Thomas; C. P. Lee; K. C. Ho, Org. Lett. 2011, 13, 2622.
    26. (a) H. C. Chu; D. Sahu; Y. C. Hsu, H. Padhy; D. Patra; J. T. Lin; D. Bhattacharya; K. L. Lu; K. H. Wei; H. C. Lin, Dye Pigm. 2012, 92, 1488. (b) R. Grisorio, L. D. Marco; G. Allegretta; R. Giannuzzi; G. P. Suranna; M. Manca; P. Mastrorilli; G. Gigli, Dye Pigm.2013, 98, 221. (c) S. Ramkuma; S. Anandan, Dye Ppig. 2013, 97, 397. (d) S. Ramkumara; S. Anandan, RSC adv., 2013, 3, 21535. (e) W. Lee; S. B. Yuk; J. Choi; H. J. Kim; H. W. Kim; S. H. Kim; B. Kim; M. J. Ko; J. P. Kim, Dye Pigm. 2014, 102, 13.
    27. F. Babudri; V. Fiandanese; G. Marchese, A. Punzi, Tetrahedron Lett. 1995, 36, 7305.
    28. M. Mastalerz, V. Fischer; C. Q. Ma; René A. J. Janssen; P. Bäuerle, Org. Lett. 2009, 11, 4500.
    29. F. A. Arroyave; C. A. Richard; J. R. Reynolds, Org. Lett. 2012, 14, 6138.
    30. J. Santos; E. A Mintz; O. Zehnder; C. Bosshard; X. R Bu; P. Günter, Tetrahedron Lett. 2001, 42, 805.
    31. D. Kumar; K. R. Justin Thomas; C. P. Lee; K. C. Ho, Org. Lett. 2011, 13, 2622.
    32. (a)H. Debus, Eur. J. Org. Chem. 1858, 107, 199.(b) 30.Br. Radzisewski, Eur. J. Inorg. Chem. 1882, 15, 2706.
    33. D. Milstein; K. Stille, J. J. Am. Chem. Soc. 1978, 100, 3636.
    34. E. Knoevenagel, Eur. J. Inorg. Chem.1898, 31, 256.
    35. (a) F. Paul; J. Patt; J. F. Hartwig, J. Am. Chem. Soc. 1994, 116, 5969. (b) B. H. Yang; S. L. Buchwald, J. Org. Chem. 1999, 125.
    36. Y. S. Yen; C. T. Lee; C. Y. Hsu; H. H. Chou; Y. C. Chen; J. T. Lin, Chem. Asian J. 2013, 8, 809.
    37. R. C. Hiborn, Am. J. Phys. 1982, 50, 982.

    下載圖示
    QR CODE