簡易檢索 / 詳目顯示

研究生: 李彥樓
LEE, YEN LOU
論文名稱: 擺動胺基酸支鍊與氫鍵Constraint 對改善SRC激酶虛擬篩選的影響
The Effects of Side Chain Flexibility and Hydrogen Bond Constraint on Improving Virtual Screening of SRC Kinase
指導教授: 孫英傑
Sun, Ying-Chieh
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 74
中文關鍵詞: SRC激酶擺動胺基酸支鏈氫鍵Constraint虛擬篩選
英文關鍵詞: SRC Kinase, Side Chain Flexibility, Hydrogen Bonds Constraint, Virtual Screening
論文種類: 學術論文
相關次數: 點閱:177下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • SRC Kinase為細胞中訊息傳遞的重要成員,其活性大小除了對細胞的增殖速率具調控作用外,同時也直接影響了“癌細胞的轉移”,若能以虛擬篩選的方式搜尋出可對SRC Kinase進行抑制的藥物分子,便可在研發資源有限的條件下,協助找出有效控制癌細胞生長及轉移的標靶藥物。本研究主要以改善SRC Kinase虛擬篩選效果為目的,利用DUD資料庫配合擺動胺基酸支鍊與氫鍵Constraint的方法,找出增進SRC Kinase篩選效果的合適條件,並實際應用於虛擬篩選的資料庫。
    首先,對同序列的三個SRC Kinase結晶結構 – PDB碼: 2SRC、1Y57及1FMK 進行活性中心10 Å範圍內所有胺基酸支鍊的擺動,雖然三者間並沒有共同可使Enrichment Factor (EF) 值明顯提升之胺基酸,但可以知道位於Hinge、Gatekeeper以及Activation Loop上那些胺基酸對計算所得的EF值有重要影響。接著對SRC Kinase進行兩種不同結合方式的氫鍵Constraint,分別為Type A與B,兩者的差別主要在於Type A同時對Hinge上兩個胺基酸主鍊具氫鍵連結,Type B則是對單一胺基酸,結果發現Type B氫鍵Constraint可將EF值平均上升至原本的兩倍。於是便將以上兩部分可將EF值改善之條件進行組合,得知Type B氫鍵Constraint配合擺動Asp404胺基酸可使三結晶結構EF值平均提升至原本的將近三倍左右。最後把以上所得結論運用於DUD以外的資料庫,本研究是以ZINC資料庫來進行篩選驗證,而驗證結果與使用DUD資料庫結果類似。

    SRC kinase plays a significant role in signal transduction. Its activity level is associated with cell proliferation and the migration of cancer cells. Virtual Screening is one of widely used computational tools in reducing research cost to develop drugs. Our aim is to develop computational protocols for improving the Virtual Screening of SRC kinase by side chain flexibility and hydrogen bonds constraint(s) in docking computation. First, we used DUD database to benchmark these effects, and later applied the protocols to one larger database, ZINC database.
    In the first place, we used three SRC Kinase crystal structures (PDB codes: 2SRC, 1Y57, and 1FMK) for docking computations and allowed all side chains within 10 Å centered at a selected point of the active site to move. Although there is no common residue’s side chain movement that can improve EF value among the examined three structures, individual effect of each examined side chain located at hinge, gatekeeper segments, and activation loop on calculated EF values are reported. After that, we applied two different kinds of hydrogen bond constraints in docking against SRC kinase. They are called Type A and B. Type A is that the ligands having hydrogen bonds with two residues of SRC kinase, and Type B is just connecting with one residue on the hinge segment. The results show that Type B hydrogen bond constraint approximately doubles the average EF value for those three crystal structures. Subsequently, we combined both side chain flexibility and hydrogen bond constraint and found that Type B hydrogen bond constraint with Asp404 side chain flexibility enhance the average EF value approximately in three-fold. Finally, we applied the above optimized conditions to the ZINC database. The calculated results are similar to the results above, and are analyzed and discussed.

    中文摘要 i ABSTRACT iii 總目錄 v 表目錄 ix Chapter 1 緒論 1 1.1 前言 2 1.2 SRC Kinase訊息傳導路徑及其影響 3 1.3 SRC Kinase的構型及其抑制機制 5 1.4 分子嵌合 8 1.5 EF值與 DUD Database 9 1.6 研究目標 11 Chapter 2 理論與方法 13 2.1 GOLD 14 2.2 基因演算法 (Genetic Algorithm, GA) 15 2.3 評分函數Scoring Function 17 2.3.1 氫鍵作用力 18 2.3.2 金屬原子作用力 19 2.3.3 親油性 (Lipophilic) 20 2.3.4 Frozen Rotatable Bonds 21 2.3.5 分子間碰撞與分子內扭角作用力 22 2.4 蛋白質可動胺基酸支鏈(Side Chain Flexibility) 與氫鍵Constraint的設定 24 Chapter 3 結果與討論 27 3.1 實驗設定 28 3.1.1 評分函數與Spearman’s Correlation Coefficient (ρ) 28 3.1.2 Number of Operation 37 3.1.3 SRC Kinase結晶結構的選擇 39 3.2 2SRC 與 1Y57再現 41 3.3 擺動SRC Kinase胺基酸支鏈 42 3.4 SRC Kinase氫鍵 Constraint 55 3.4.1 單一氫鍵Constraint 56 3.4.2 TypeA 與TypeB氫鍵Constraint 58 3.4.3 氫鍵Constraint配合擺動胺基酸支鏈 60 3.5 SRC Kinase 3結晶結構篩選出共同的活性分子構型 63 3.6 ZINC虛擬篩選 65 Chapter 4 結論 70

    1 Taylor, R. D., Jewsbury, P. J. & Essex, J. W. A review of protein-small molecule docking methods. Journal of Computer-Aided Molecular Design 16, 151-166, doi:10.1023/a:1020155510718 (2002).
    2 Congreve, M., Murray, C. W. & Blundell, T. L. Keynote review: Structural biology and drug discovery. Drug Discovery Today 10, 895-907 (2005).
    3 Zhang, J., Yang, P. L. & Gray, N. S. Targeting cancer with small molecule kinase inhibitors. Nat Rev Cancer 9, 28-39, doi:http://www.nature.com/nrc/journal/v9/n1/suppinfo/nrc2559_S1.html (2009).
    4 Kolch, W. & Pitt, A. Functional proteomics to dissect tyrosine kinase signalling pathways in cancer. Nat Rev Cancer 10, 618-629 (2010).
    5 Haskell, M. D., Slack, J. K., Parsons, J. T. & Parsons, S. J. c-Src Tyrosine Phosphorylation of Epidermal Growth Factor Receptor, P190 RhoGAP, and Focal Adhesion Kinase Regulates Diverse Cellular Processes. Chemical Reviews 101, 2425-2440, doi:10.1021/cr0002341 (2001).
    6 Xu, W., Harrison, S. C. & Eck, M. J. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385, 595-602 (1997).
    7 Roskoski Jr, R. Src protein–tyrosine kinase structure and regulation. Biochemical and Biophysical Research Communications 324, 1155-1164 (2004).
    8 Huse, M. & Kuriyan, J. The Conformational Plasticity of Protein Kinases. Cell 109, 275-282 (2002).
    9 Young, M. A., Gonfloni, S., Superti-Furga, G., Roux, B. & Kuriyan, J. Dynamic Coupling between the SH2 and SH3 Domains of c-Src and Hck Underlies Their Inactivation by C-Terminal Tyrosine Phosphorylation. Cell 105, 115-126 (2001).
    10 Ewing, T. J. A., Makino, S., Skillman, A. G. & Kuntz, I. D. DOCK 4.0: Search strategies for automated molecular docking of flexible molecule databases. Journal of Computer-Aided Molecular Design 15, 411-428, doi:10.1023/a:1011115820450 (2001).
    11 Morris, G. M. et al. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry 19, 1639-1662, doi:10.1002/(sici)1096-987x(19981115)19:14<1639::aid-jcc10>3.0.co;2-b (1998).
    12 Jones, G., Willett, P., Glen, R. C., Leach, A. R. & Taylor, R. Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology 267, 727-748 (1997).
    13 Friesner, R. A. et al. Glide:  A New Approach for Rapid, Accurate Docking and Scoring. 1. Method and Assessment of Docking Accuracy. Journal of Medicinal Chemistry 47, 1739-1749, doi:10.1021/jm0306430 (2004).
    14 Rarey, M., Wefing, S. & Lengauer, T. Placement of medium-sized molecular fragments into active sites of proteins. Journal of Computer-Aided Molecular Design 10, 41-54, doi:10.1007/bf00124464 (1996).
    15 Abagyan, R., Totrov, M. & Kuznetsov, D. ICM—A new method for protein modeling and design: Applications to docking and structure prediction from the distorted native conformation. Journal of Computational Chemistry 15, 488-506, doi:10.1002/jcc.540150503 (1994).
    16 Huang, N., Shoichet, B. K. & Irwin, J. J. Benchmarking Sets for Molecular Docking. Journal of Medicinal Chemistry 49, 6789-6801, doi:10.1021/jm0608356 (2006).
    17 Perola, E. Minimizing false positives in kinase virtual screens. Proteins 64, 422-435, doi:10.1002/prot.21002 (2006).
    18 Irwin, J. J. & Shoichet, B. K. ZINC − A Free Database of Commercially Available Compounds for Virtual Screening. Journal of Chemical Information and Modeling 45, 177-182, doi:10.1021/ci049714+ (2004).
    19 Eldridge, M. D., Murray, C. W., Auton, T. R., Paolini, G. V. & Mee, R. P. Empirical scoring functions: I. The development of a fast empirical scoring function to estimate the binding affinity of ligands in receptor complexes. Journal of Computer-Aided Molecular Design 11, 425-445, doi:10.1023/a:1007996124545 (1997).
    20 Mooij, W. T. M. & Verdonk, M. L. General and targeted statistical potentials for protein–ligand interactions. Proteins: Structure, Function, and Bioinformatics 61, 272-287, doi:10.1002/prot.20588 (2005).
    21 Verdonk, M. L. et al. Modeling Water Molecules in Protein−Ligand Docking Using GOLD. Journal of Medicinal Chemistry 48, 6504-6515, doi:10.1021/jm050543p (2005).
    22 Schlessinger, A. & Rost, B. Protein flexibility and rigidity predicted from sequence. Proteins: Structure, Function, and Bioinformatics 61, 115-126, doi:10.1002/prot.20587 (2005).
    23 Cole, J. C., Murray, C. W., Nissink, J. W. M., Taylor, R. D. & Taylor, R. Comparing protein–ligand docking programs is difficult. Proteins: Structure, Function, and Bioinformatics 60, 325-332, doi:10.1002/prot.20497 (2005).
    24 Lovell, S. C., Word, J. M., Richardson, J. S. & Richardson, D. C. The penultimate rotamer library. Proteins: Structure, Function, and Bioinformatics 40, 389-408, doi:10.1002/1097-0134(20000815)40:3<389::aid-prot50>3.0.co;2-2 (2000).
    25 Mishra, N. et al. Structure based virtual screening of GSK-3β: Importance of protein flexibility and induced fit. Bioorganic & Medicinal Chemistry Letters 19, 5582-5585 (2009).
    26 Zuccotto, F., Ardini, E., Casale, E. & Angiolini, M. Through the “Gatekeeper Door”: Exploiting the Active Kinase Conformation. Journal of Medicinal Chemistry 53, 2681-2694, doi:10.1021/jm901443h (2009).
    27 Manetti, F. et al. A Combination of Docking/Dynamics Simulations and Pharmacophoric Modeling To Discover New Dual c-Src/Abl Kinase Inhibitors. Journal of Medicinal Chemistry 49, 3278-3286, doi:10.1021/jm060236z (2006).
    28 Perola, E. Minimizing false positives in kinase virtual screens. Proteins: Structure, Function, and Bioinformatics 64, 422-435, doi:10.1002/prot.21002 (2006).

    29 PDB: http://www.rcsb.org/pdb/home/home.do

    下載圖示
    QR CODE