簡易檢索 / 詳目顯示

研究生: 李亭誼
Ting-Yi Lee
論文名稱: 探討不同科學認識觀的八年級學生在社會性科學議題上論證能力的表現
指導教授: 許瑛玿
學位類別: 碩士
Master
系所名稱: 科學教育研究所
Graduate Institute of Science Education
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 136
中文關鍵詞: 社會性科學議題論證能力科學認識觀
英文關鍵詞: socie-scientific issue, argumentation skill, scientific epistemological view
論文種類: 學術論文
相關次數: 點閱:171下載:115
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究探討我國八年級學生在社會性科學議題上論證能力的表現和其科學認識觀對於其論證能力的影響。研究對象採樣方式為便利取樣,對象為台北縣內一所偏遠地區國民中學的八年級學生,有效樣本數為42人。研究採實驗研究法單組前後測設計,檢視實施以「水庫興建預定地的選定」為主題的論證教學前後,學生的論證能力表現情形以及不同的科學認識觀傾向對於學生論證能力的影響。經「魏克遜符號等級考驗」(Wilcoxon signed ranks test)統計分析,發現論證教學前後學生整體的論證能力表現,以及「提出論點」、「提出前提」、「提出支持性論點」、「提出證據」與「提出反論點」五項論證子能力的表現都沒有顯著的改變(p<.05),學生整體的科學認識觀以及「科學的創造性(IC)」、「科學知識的暫時性(CT)」、「社會協調性(SN)」、「文化影響面(CU)」四個項度在論證教學前後皆沒有顯著的改變,僅有在「探究過程的理論依據性(TL)」這個項度得分於論證教學後有顯著的下降(p<.05),表示學生對科學探究過程的理論依據性於論證教學後更傾向邏輯實證主義的科學認識觀。進一步以「魏氏-曼-惠特尼考驗 (Wilcoxon-Mann-Whitney test)」檢定學生科學認識觀傾向(偏向建構主義的認識觀或偏向邏輯實證主義的認識觀)對於其整體論證能力表現以及各項論證子能力(提出論點、提出前提、提出反論點、提出支持性論點,以及提出證據)的影響,結果發現,不同科學認識觀傾向的學生在整體論證能力和「提出支持性論點」這項論證子能力於論證教學前後的進步幅度達顯著(p<.01),表示科學認識觀越傾向建構主義的學生,在經過論證教學後其整體論證能力以及「提出支持性論點」的能力會越好。

    This study aimed to explore the development of eighth graders’ argumentation skills and scientific epistemological views through socioscientific issues-based instruction, and the relationship between their argumentation skills and scientific epistemological views. After selecting 42 participators from a remote middle school using convenience sampling, we used the one-group and pre-posttest experimental design to examine the effect of socioscientific issues-based instruction. The results showed that students’ generating arguments, counterarguments, backings, evidences, and qualifiers were not improved significantly after the instruction. Moreover, their scientific epistemological views in the theory-laden exploration of science had changed significantly and were closer to the view of logical positivism. Furthermore, we found that there was a significant difference in argumentation skills between students with different scientific epistemological views, especially in generating backings. Students whose scientific epistemological views tended to constructivism epistemological views would have better argumentation skills after the socioscientific issues-based instruction.

    第一章 緒論-------------------------------------------------1 第一節 研究背景與動機---------------------------------------1 第二節 研究目的--------------------------------------------5 第三節 研究問題--------------------------------------------6 第四節 研究的重要性-----------------------------------------7 第五節 名詞釋義--------------------------------------------8 第二章 文獻探討--------------------------------------------10 第一節 論證能力-------------------------------------------10 一、 論證的重要性---------------------------------------10 二、 論證的定義-----------------------------------------11 三、 論證能力與論證品質----------------------------------13 四、 論證相關研究---------------------------------------17 (一) 促進論證教學成效-----------------------------------17 (二) 論證能力相關實證研究-------------------------------19 第二節 社會性科學議題--------------------------------------24 一、 從STS(Science, Technology, and Society)到SSI------24 二、 社會性科學議題的定義--------------------------------26 三、 社會性科學議題與論證--------------------------------26 第三節 科學認識觀------------------------------------------28 一、 認識觀與認識信念(Epistemological belief)------------28 二、 科學認識觀的定義------------------------------------28 三、 論證與學生特質-------------------------------------29 第三章 研究方法--------------------------------------------31 第一節 研究對象-------------------------------------------32 一、 研究對象的選取方式----------------------------------32 二、 研究對象特質----------------------------------------32 第二節 研究設計與流程-------------------------------------37 一、 研究流程------------------------------------------37 (一) 準備階段------------------------------------------37 (二) 資料收集階段---------------------------------------37 (三) 結果分析階段---------------------------------------38 二、 論證教學課程設計------------------------------------40 (一) 論證議題的選取-------------------------------------40 (二) 論證教學課程設計------------------------------------41 第三節 研究工具-------------------------------------------47 一、「論證技能與議題決策問卷」----------------------------47 二、「科學認識觀問卷」-----------------------------------48 第四節 資料分析-------------------------------------------50 一、 學生論證能力表現情形--------------------------------50 二、 學生科學認識觀表現情形------------------------------59 三、 不同科學認識觀對於學生論證表現的影響------------------60 第五節 研究範圍與限制-------------------------------------62 第四章 研究結果與討論--------------------------------------63 第一節 學生論證能力的表現----------------------------------63 一、 論證教學前後學生的論證能力表現分析--------------------63 二、 論證子能力得分頻率分佈情形---------------------------65 三、 質性資料分析---------------------------------------68 (一) 問卷中於論證子能力「提出論點」的資料分析---------------68 (二) 問卷中於論證子能力「提出前提」的資料分析---------------69 (三) 問卷中於論證子能力「提出反論點」的資料分析-------------70 (四) 問卷中於論證子能力「提出支持性論點」的資料分析---------71 (五) 問卷中於論證子能力「提出證據」的資料分析---------------72 四、 論證教學前後論證能力的變化情形-----------------------74 第二節 學生的科學認識觀------------------------------------78 一、 論證教學前後學生的科學認識觀表現分析------------------78 二、 科學認識觀問卷前後測各題答題頻率分析------------------79 三、 論證教學前後論證能力的變化情形-----------------------82 第三節 學生論證能力與科學認識觀相關性探討--------------------85 第五章 結論與建議-------------------------------------------92 第一節 研究發現與結論-------------------------------------92 一、 論證教學前後學生論證能力表現及科學認識觀的改變情形------92 (一) 論證能力表現---------------------------------------92 (二) 科學認識觀-----------------------------------------93 二、 學生的科學認識觀對於論證能力表現的影響----------------93 第二節 檢討與建議-----------------------------------------95 一、 論證教學後論證表現改變情形檢討與建議------------------95 二、 學生的科學認識觀對於論證能力表現的影響檢討與建議--------96 第三節 未來研究發展與方向----------------------------------98 一、 論證教學課程設計------------------------------------98 (一) 調整前後測實施的時間間距-----------------------------98 (二) 加強論證技能的訓練----------------------------------98 (三) 縮小相互論證的小組人數------------------------------98 (四) 增加學生於論證學習歷程之自我檢核----------------------99 二、 未來可能的研究方向----------------------------------99 (一) 了解小組內互動對論證的影響---------------------------99 (二) 長時間的論證教學------------------------------------99 (三) 加入增進對科學本質瞭解的課程設計----------------------99 參考文獻--------------------------------------------------100 中文-----------------------------------------------------100 英文-----------------------------------------------------101

    中文文獻:
    邱美虹(1994)。科學課程革新-評介Project 2061,SS&C和STS理念。科學教育月刊,174,2-14。
    林陳涌(1996)。「了解科學本質量表」之發展與效化。科學教育學刊,4(1),1-58。
    教育部(2003)。民國九十二年國民中小學九年一貫課程綱要。台北市:教育部。
    張淑女(2004)。從認識論的觀點探究大學生論證思考之能力與模式。國立台灣師範大學科學教育研究所博士論文。
    黃柏鴻、林樹聲(2007)。論證教學相關實證性研究之回顧與省思。科學教育月刊,302,5-20。
    劉湘瑤、李麗菁、蔡今中(2007)。科學認識觀與社會性科學議題抉擇判斷之相關性探討。科學教育學刊,15(3),335-356。
    教育部(2008)。民國九十七年國民中小學九年一貫課程綱要。台北市:教育部。
    蔡俊彥、黃台珠(2008)。學童論證能力及科學本質觀之研究。屏東教育大學學報─理工類,28,85-116。
    林樹聲、黃柏鴻(2009)。國小六年級學生在社會性科學議題教學中之論證能力研究–不同學業成就學生間之比較。科學教育學刊,17,111-133。
    鄧又仁、林素華 (2009)。合作學習教學策略對七年級國中學生論證能力的影響。教育科學期刊,8,113-140。
    李松濤、林煥祥、洪振方(2010)。探究式教學對學童科學論證能力影響之探究。科學教育學刊,17,111-133。
    佘曉清、陳倩嫻(2009)。探討數位論證學習課程對中學生科學概念建構與論證能力之影響。國立交通大學教育研究所碩士論文,未出版,新竹。

    英文文獻:
    American Association for the Advancement of Science. (1993). Benchmarks for Science Literacy. New York: Oxford University Press.
    Aikenhead, G. S. (1994). What is STS science teaching? In J. Solomon and G. Aikenhead (Eds.), STS education: International perspectives in reform (pp. 47-59). New York: Teachers’ College Press.
    Aufschnaiter, C. V., Erduran, S., Osborne, J., & Simon, S. (2008). Arguing to learn and learning to argue: Case studies of how students' argumentation relates to their scientific knowledge. Journal of Research in Science Teaching, 45, 101-131.
    Bell, P., & Linn, M. C. (2000). Scientific arguments as learning artifacts: designing for learning from the web with KIE. International Journal of Science Education, 22, 797-817.
    Bell, R. L., & Lederman, N. G. (2003). Understandings of the nature of science and decision making on science and technology based issues. Science Education, 87(3), 352-378.
    Bloom, J. W. (2001). Discourse, cognition, and chaotic systems: An examination of students’ argument about density. Journal of the Learning Sciences, 10(4), 447-492.
    Boulter, C. J.& Gilbert, J. K. (1995). Argument and science education. In P. J. M. Costello, & S. Mitchell (Eds.), Competing and consensual voices: The theory and practice of argumentation. Clevedon: Multilingual Matters.
    Bricker, L. A.; Bell, P. (2008). Conceptualizations of argumentation from science studies and the learning sciences and their implications for the practices of science Education. Science Education, 92, 473-498.
    Bybee, Rodger (Ed.). (1985). Science-Technology-Society. In 1985 NSTA yearbook. Washington: National Science Teachers Association.
    Dawson, V. M., & Venville, G. (2010). Teaching strategies for developing students’ argumentation skills about socioscientific issues in high school genetics. Research of Science Education, 40, 133-148.
    Driver, R., Newton, P., & Osborne, J. (2000). Establishing the norms of scientific argumentation in classrooms. Science Education, 84(33), 287-312.
    Duschl, R. A., Schweingruber, H. A., & Shouse, A. W. (Eds.). (2007). Taking science to school: Learning and teaching science in grades K-8. Washington, D.C.: National Academies Press.
    Erduran, S., Simon, S., & Osborne, J. (2004). TAPping into argumentation: Developments in the application of Toulmin's Argument Pattern for studying science discourse. Science Education, 88(6), 915-933.
    Freeley, A. J., & Steinberg, D. L. (2005). Argumentation and debate. Belmont, CA: Thomson Wadsworth.
    Hinkle, D. E., Wiersma, W., & Jurs, S. G. (Eds.). (1998). Applied Statistics for the Behavioral Sciences. Boston, MA :Houghton Mifflin.
    Hogan, K., & Maglienti, M. (2001). Comparing the epistemological underpinnings of students' and scientists' reasoning about conclusions. Journal of Research in Science Teaching, 38(6), 663-687.
    Jeong, A., & Lee, J.-M. (2008). The effects of active versus reflective learning style on the processes of critical discourse in computer-supported collaborative argumentation. British Journal of Educational Technology, 39(4), 651-665.
    Jime´nez-Aleixandre, M. P., Rodrı´guez, A. B., & Duschl, R. A. (2000). ‘‘Doing the lesson’’ or ‘‘doing science’’ :Argument in high school genetics. Science Education, 84, 757–792.
    Jiménez-Aleixandre, M. P. (2002). Knowledge producers or knowledge consumers? Argumentation and decision making about environmental management. International Journal of Science Education, 24(11), 1171-1190.
    Kolstø, S. D. (2004). Students' argumentations: Knowledge, values and decisions. In E. K. Henriksen & M. Ødegaard (Eds.), Naturfagenes didaktikk – en disiplin i forandring? Det 7. nordiske forskersymposiet om undervisning i naturfag i skolen (pp. 63-78). Kristiansand: Høyskoleforlaget AS.
    Kolstø, S. D. (2006). Science students' critical examination of scientific information related to socioscientific issues. Science Education, 90, 632-655.
    Kortland, K. (1996). An STS case study about students’ decision making on the waste issue. Science Education, 80, 673–689.
    Kuhn, D. (1991). The Skills of Argument. Cambridge: Cambridge University Press.
    Kuhn, D. (1992). Thinking as argument. Harvard Educational Review, 62, 155-178.
    Kuhn, D., Cheney, R., & Weinstock, M. (2000). The development of epistemological understanding. Cognitive Development, 15, 309-328.
    Lawson, A. E. (2002). Sound and Faulty Arguments Generated by Preservice Biology Teachers When Testing Hypotheses Involving Unobservable Entities. Journal of Research in Science Teaching, 39(33), 237-252.
    Mason, L., & Scirica, F. (2006). Prediction of students’ argumentation skills about controversial topics by epistemological understanding. Learning and Instruction, 16(5), 492-509.
    Millar, R., & Osborne, J. (1998). Beyond 2000: Science Education for the Future. London: Nuffield Seminar Series: Interim Report V3.
    Niaz, M., Aguilera, D., Maza, A., & Liendo, G. (2002). Arguments, Contradictions, Resistances, and Conceptual Change in Students’ Understanding of Atomic Structure. Science Education, 86(4), 505-525.
    Nussbaum, E. M. (2002). Scaffolding Argumentation in the Social Studies Classroom. Social Studies, 93(3), 79-85.
    Osborne, J., Erduran, S., & Simon, S. (2004a). Ideas, evidence and argument in science. In-service Training Pack, Resource Pack and Video. London: Nuffield Foundation.
    Osborne, J., Erduran, S., & Simon, S. (2004b). Enhancing the quality of argumentation in school science. Journal of Research in Science Teaching, 41(10), 994–1020.
    Patronis, T., Potari, D., & Spiliotopoulou, V. (1999). Students’ argumentation in decision-making on a socio-scientific issue: Implications for teaching. International Journal of Science Education, 21, 745–754.
    Pedretti, E. (1999). Decision making and STS education: exploring scientific knowledge and social responsibility in schools and science centers through an issues-based approach. School Science and Mathematics, 99, 174-181.
    Pedretti, E. (2003). Teaching science, technology, society and environment (STSE) education: Preservice teachers’ philosophical and pedagogical landscapes. In D. L. Zeidler (Ed.), The role of moral reasoning on socioscientific issues and discourse in science education. Dordrecht: Kluwer Academic Press.
    Ramsey, J. (1993). The science education reform movement: Implications for social responsibility. Science Education, 77(2), 235-258.
    Sadler, T. D. (2004). Informal Reasoning Regarding Socioscientific Issues: A Critical Review of Research. Journal of Research in Science Teaching, 41, 513-536.
    Schommer, M., & Hutter, R. (2002). Epistemological beliefs and thinking about everyday controversial issues. The Journal of Psychology, 136(1), 5-20.
    Siegel, H. (1995). Why should educators care about argumentation. Informal Logic, 17(2), 159-176.
    Simonneaux, L. (2001). Role-play or debate to promote students’ argumentation and justification on an issue in animal transgenesis. International Journal of Science Education, 23(9), 903-927.
    Solomon, J. (1994). Knowledge, values, and the public choice of science knowledge. In J. Solomon and G. Aikenhead (Eds.), STS education: International perspectives in reform (pp. 99-111). New York: Teachers’ College Press.
    Stradling, R. (1984). The teaching of controversial issues: An evaluation. Educational Review, 36(2), 121-129.
    Taber, K. S., Cooke, V. M., de Trafford, T., Lowe, T. J., Millins, S., & Quail, T. (2006). Learning to teach about ideas and evidence in science: Experiences of teachers in training. School Science Review, 87(321), 63-73.
    Tsai, C.-C. (1998). An analysis of Taiwanese eighth graders’ science achievement, scientific epistemological beliefs and cognitive structure outcomes after learning basic atomic theory. International Journal of Science Education, 20, 413-425.
    Tsai, C.-C. (1999a). Content analysis Taiwanese 14 year olds’ information processing operations shown in cognitive structures following physics instruction, with relations to science attainment and scientific epistemological beliefs. Research in Science & Technological Education, 17, 125-138.
    Tsai, C. C., Liu, S. Y. (2005). Developing a Multi-dimensional Instrument for Assessing Students’ Epistemological Views toward Science. International Journal of Science Education, 27, 1621–1638.
    Toulmin, S. E. (1958). The uses of argument. Cambridge: Cambridge University Press.
    Yerrick, R. K. (2000). Lower track science students' argumentation and open inquiry instruction. Journal of Research in Science Teaching, 37(8), 807-838.
    Zeidler, D. L. (1984). Moral issues and social policy in science education: Closing the literacy gap. Science Education, 68, 411– 419.
    Zeidler, D. L.,Walker, K. A., Ackett,W. A., & Simmons, M. L. (2002). Tangled up in views: Beliefs in the nature of science and responses to socioscientific dilemmas. Science Education, 86(3), 343– 367.
    Zeidler, D. L., & Keefer, M. (2003). The role of moral reasoning and the status of socioscientific issues in science education: Philosophical, psychological and pedagogical considerations. In D. L. Zeidler (Ed.), The role of moral reasoning on socioscientific issues and discourse in science education. Dordrecht: Kluwer Academic Publishers.
    Zeidler, D. L., Osborne, J., Erduran, S., Simon, S., & Monk, M. (2003). The role of argument and fallacies during discourse about socioscientific issues. In D. L. Zeidler (Ed.), The role of moral reasoning on socioscientific issues and discourse in science education. Dordrecht: Kluwer Academic Press.
    Zedler, D. L., Sadler, T.D., Simmons, M. L., & Howes, E. V. (2005). Beyond STS: A Research-Based Framework for Socioscientific Issues Education. Science Education, 89, 357-377.
    Zohar, A. & Nemet, F. (2002). Fostering students’ knowledge and argumentation skills through dilemmas in human genetics. Journal of Research in Science Teaching, 39, 35–62.

    下載圖示
    QR CODE