簡易檢索 / 詳目顯示

研究生: 黃逸群
Huang, Yi-Chiun
論文名稱: 低磁場核磁共振系統及其肝癌檢測應用
High-Tc SQUID based Low-Field NMR system for liver tumor discrimination
指導教授: 楊鴻昌
Yang, Hong-Chang
廖書賢
Liao, Shu-Hsien
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 36
中文關鍵詞: 低磁場核磁共振縱向鬆弛時間肝癌檢測
論文種類: 學術論文
相關次數: 點閱:104下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去本實驗室已經成功整合超導量子干涉元件(SQUID, superconducting quantum interference device)和預極化(prepolarization)技術在台大醫院架設低磁場核磁共振系統(Low-field NMR)並運用於腫瘤量測之應用。為了克服臨床檢驗中微量生物樣品量測上的困難,本研究將實驗系統的接收線圈最佳化,藉此提升系統的訊雜比(signal-to-noise ratio,SNR)以降低需要的檢體量。
      在接收線圈的設計上,配合微量的樣品,將接收線圈的體積縮小,並使用不同匝數的接收線圈進行樣品檢測,比較其訊號強度,找出最佳的線圈匝數。此外更比較了梯度計與磁量計樣式的接收線圈,發現在少量樣品的檢測中,磁量計樣式的接收線圈具有較佳的訊雜比。最佳化後的接收線圈在量測0.1毫升的去離子水時SNR可達到18,較原先的系統提高了80 %。在腫瘤檢測的應用中,進行了微量的老鼠腫瘤與正常肝組織之縱向鬆弛時間(T1)之量測,可區別的最少樣品量達0.05克,符合臨床檢測中微量取樣的要求,具有臨床檢驗應用的潛力。

    目錄 第一章 緒論 ………………………………………………………………………1 第二章 實驗原理 ………………………………………………………………3 2-1 核磁共振原理 ………………………………………………………3 2-2 縱向鬆弛與橫向鬆弛 ………………………………………………7 2-3自由水分子 (free water) 與結合水分子 (bound water) …………10 第三章 實驗架構與系統改進 …………………………………………………11 3-1 系統架構介紹 …………………………………………………11 3-2 接收線圈最佳化 ………………………………………………13 3-3 實驗分析方法 …………………………………………………16 3-4 縱向鬆弛時間(T1) 之量測 ………………………………………19 第四章 實驗結果與數據討論 ………………………………………………… 20 4-1 接收線圈匝數最佳化 ………………………………………… 20 4-2 梯度線圈與法拉第線圈SNR之比較 ……………………………22 4-3 不同重量老鼠肝腫瘤與正常肝組織之T1量測 …………………24 第五章 結論 ……………………………………………………………………34 參考文獻 …………………………………………………………………………35

    [1] Don C. Rockey,Stephen H. Caldwell,Zachary D. Goodman,Rendon C. Nelson,and Alastair D. Smith, ” Liver Biopsy “, HEPATOLOGY, Vol. 49, No. 3, (2009)
    [2] Erin Brender, MD, ” Frozen Section Biopsy “, 3200 JAMA, December 28, 2005—Vol 294, No. 24 (2005)
    [3] April M. Chow PhD, Darwin S. Gao BEng, Shu Juan Fan MSc, Zhongwei Qiao MD, Frank Y. Lee BEng, Jian Yang MD, PhD, Kwan Man PhD and Ed X. Wu PhD, ”Measurement of liver T1 and T2 relaxation times in an experimental mouse model of liver fibrosis “, Journal of Magnetic Resonance Imaging ,Volume 36, Issue 1, pages 152–158, July (2012).
    [4] Huang, K. W., Liao, S. H., Yang, H. C., Chen, H. H., Horng, H. E., Chen, M. J. & Yang, S. Y. 2011 Jun 1 In : IEEE Transactions on Applied Superconductivity. 21, 3 PART 1, p. 461-464 4 p., 5621873
    [5] Yang, H. C., Liao, S. H., Liu, C. W., Chen, H. H., Horng, H. E., Chen, K. L., Chen, M. J., Liu, C. I. & Wang, L. M. 2013 May 20 In : IEEE Transactions on Applied Superconductivity. 23, 3, 6399572
    [6] Liao, S. H., Chieh, J. J., Chou, Y. T., Wang, M. W., Chen, H. H., Huang, K. W., Yang, H. C. & Horng, H. E. 2015 Jun 1 In : IEEE Transactions on Applied Superconductivity. 25, 3, 7012140
    [7] S. Appelt, A. Ben-Amar Baranga, C.J. Erickson, M.V. Romalis, A.R.Young, W. Happer,” Theory of spin-exchange optical pumping of 3He and 129Xe “, Phys. Rev. A 58, 1412 (1998).
    [8] M. Goldman, H. Jo’hannesson, O. Axelsson, M. Karlsson, “Hyperpolarization of 13C through order transfer from parahydrogen: A new contrast agent for MRI “, Magn.Reson. Imaging 23, 153 (2005)
    [9] G. Navon, Y.-Q. Song, T. Ro˜o˜m, S. Appelt, R.E. Taylor, A. Pines,” Enhancement of Solution NMR and MRI with Laser-Polarized Xenon”, Science 271, 1848 (1996).
    [10] S. Appelt, F.W. Ha‥sing, S. Baer-Lang, N.J. Shah, B. Blümich, “Enhancement of Solution NMR and MRI with Laser-Polarized Xenon”, Chem. Phys. Lett. 348, 263 (2001)
    [11] Shu-Hsien Liao and Herng-Er Horng, Hong-Chang Yang, and Shieh-Yueh Yang, “Longitudinal relaxation time detection using a high-Tc superconductive quantum interference device magnetmeter”,J. Appl. Phys. 102, 033914 (2007).
    [12] M.A. Espy, A.N. Matlachov, P.L. Volegov, J.C. Mosher, and R.H.Kraus Jr., ” SQUID-Based Simultaneous Detection of NMR and Biomagnetic Signals at Ultra-Low Magnetic Fields”, IEEE Trans.Appl. Supercon. 15, 635 (2005).
    [13] A.H. Trabesinger, R. McDermott, S.K. Lee, M. Mu1ck, J. Clarke, and A. Pines, “ SQUID-Detected Liquid State NMR in Microtesla Fields“, J. Phys. Chem. A 108, 957-963 (2004).
    [14] R. McDermott, S.K. Lee, B. ten Haken, A.H. Trabesinger, A. Pines, and J. Clarke, “Microtesla MRI with a superconducting quantum interference Device”, Proc. Natl. Acad. Sci. USA 101, 7857 (2004).
    [15] M. Mössle, S. Busch, M. Hatridge, W. Myers, A. Pines, and J. Clarke, “SQUID-detected microtesla MRI: a new modality for tumor detection”, paper presented at 2006 Applied Superconductivity conference, Aug. 27-Sept.1, 2006, Seattle, Washington, USA.
    [16] H. C. Seton, D.M. Busell, J.S.M. Hutchison, I. Nicholson, D.J. Lurie, Phys. Med. Biol. 73, 2133 (1992).
    [17] H. C. Seton, J.S.M. Hutchison, D. M. Busell, Meas. Sci. Technol. 8, 198 (1997).
    [18] H. C. Seton, J.S.M. Hutchison, D. M. Busell, IEEE Trans. Appl. Supercon. 7, 3213 (1997).
    [19] Hong-Chang Yang,Shu-Hsien Liao, Herng-Er Horng,Shing-Ling Kuo,Hsin-Hsien Chen, and S. Y. Yang, Appl. Phys. Lett. 88, 252505 (2006)
    [20] S. Kumar, R. Mathews, S. G.. Haupt, D.K. Lathrop, M. Takigawa, J. R. Rozen, S. L. Brown, R. H. Koch, Appl. Phys. Lett. 70, 1037 (1997).
    [21] S. Kumar, W. F. Avrin, B. R. Whitecotton, IEEE Trans. Magn. 32, 5261 (1996).
    [22] K. Schlenga, R. F. McDemott, J. Clarke, R. E. de Souza, A. Wong-Foy, A. Pines, Appl. Phys. Lett. 75, 3695 (1999).
    [23] N. Q. Fan, M. B. Heaney, J. Clarke, D. Newitt, L. L. Wald, E. L. Hahn, A. Bielecki, A. Pines, IEEE Trans. Magn 25, 1193 (1989).
    [24] M. A. Espy, A. N. Matlachov, P. L. Volegov, J. C. Mosher, and R. H. Kraus, Jr. IEEE Trans. Appl. Supercon. 15, 635 (2005).
    [25] M. Burghoff, S. Hartwig, L. Trahms, and J. Bernarding, Appl. Phys. Lett. 87, 054103 (2005)
    [26] M A Bernstein, K F King and X J Zhou. Handbook of MRI Pulse Sequences. Elsevier Academic Press, 960 (2004)
    [27] Ion-Christian Kiricuta, Jr.,1 and Virgil Simpläceanu .CANCER RESEARCH 35. 1164 1167, May (1975)
    [28] Hsin-Hsien Chen, Kai-Wen Huang, Hong-Chang Yang, Herng-Er Horng, and Shu-Hsien LiaoJ. Appl. Phys. 114, 064701 (2013)

    無法下載圖示 本全文未授權公開
    QR CODE