簡易檢索 / 詳目顯示

研究生: 葉又瑄
Ye, You-Syuan
論文名稱: 成長大地豐富之銅鋇錫硫硒薄膜硫族化合物應用於光伏吸收層
Earth-Abundant Chalcogenide Cu2BaSn(S,Se)4 Thin Film Growth for Photovoltaic Absorber
指導教授: 陳貴賢
Chen, Kuei-Hsien
陳政營
Chen, Cheng-Ying
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 71
中文關鍵詞: 大地豐富元素金屬硫族化合物銅鋇錫硫硒室內光伏應用
英文關鍵詞: Earth-abundant, Metal chalcogenides, CBTSSe, Indoor-applications
DOI URL: http://doi.org/10.6345/NTNU201900997
論文種類: 學術論文
相關次數: 點閱:146下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,以銅鋅錫硫硒為吸收層的太陽能電池日漸蓬勃發展,其原因來自於它不使用稀有(例如: 銦),以及有毒的元素(例如: 鎘) 作為其合成的材料,然而,陽離子的錯位,如銅與鋅的錯位,及相關的能隙拖尾現象限制了其太陽能電池效率的表現。由於鋇離子的離子半徑非常大且性質獨特,與鋇相關的缺陷活化能非常高,不易於生成,且生成的缺陷其為淺層,不會造成載子分離困難進而降低太陽能電池的效率,的銅鋇錫硫太陽能電池近年來被視為銅鋅錫硫硒的替代吸收層,且能帶約為2.0電子伏特的性質對於串聯式太陽能電池上電極應用更為合適。
    對於室內光伏應用,理想的能隙範圍為1.9電子伏特,因此我們透過摻雜硒元素進去銅鋅錫硫的薄膜,降低其能隙,進而產生銅鋅錫硫硒新的吸收層。藉由調控硫和硒的比例,我們可以達到一可調能隙範圍1.89到2.05電子伏特之光伏吸收層,可應用於家用能源自主電子設備的光伏器件或作串聯太陽能電池之應用。
    在此篇研究中,我們透過真空的方式去製備此銅鋅錫硫硒吸收層,藉由拉曼、光激發螢光頻譜,以及X-射線繞射分析去探討薄膜的品質與辨別相的結構,最後,得到一個可調控能隙極具有相當潛力的太陽能電池吸收層。

    In recent years, Cu2ZnSn(S,Se)4 (CZTSSe) materials have shown significant progress, which avoids using rare(Indium) and/or toxic(Cadmium) metals in thin-film photovoltaic (PV) technology. However, cationic disorder (i.e., Cu/Zn) and associated band tailing limit the device performance. Due to the distinct coordination environment of the large Ba2+ cation, the formation energy of Ba-related defects is high, and most of the defects show shallow properties, Cu2BaSnS4 (CBTS) has been proposed as an alternative to CZTSSe with the bandgap of 2.05-2.10 eV, which is promising to be a top-cell absorber in tandem photovoltaic conversion devices.
    Consider the ideal bandgap for indoor application is 1.9 eV, we further incorporated selenium into CBTS film to reduce the bandgap then form the Cu2BaSn(S,Se)4 (CBTSSe). By tuning the S/Se ratio, the tunable bandgap of absorbers with the range from 1.89 eV to 2.05 eV was obtained. These novel absorbers can not only be used as photovoltaics for household-energy-autonomous electronics but also as a good candidate for tandem solar cells.
    In this work, we use the vacuum process to synthesis the CBTSSe absorber and use Raman, photoluminescence (PL) spectroscopies, and X-ray diffraction (XRD) measurement as the tool to understand the quality and the information of phase identification. Finally, got potential absorber layers with tunable bandgap.

    致謝 I 中文摘要 II Abstract III Contents IV Figure of Contents VI Chapter 1、Overview 1 1-1 Preface 1 1-2 Background of study 2 1-3 Motivation 7 Chapter 2、Emering Metal Chacoginide Cu2BaSnS4-XSex Family for Photovoltaic Absorber 10 2-1 Earth-Abundant Chalcogenide Cu2BaSnS4 Thin Film Growth for Photovoltaic Absorber 10 2-2 Emerging Cu2BaSnS4-xSex (CBTSSe) photovoltaic materials with tunable bandgap and phase controllability 17 Chapter 3、Experimental Details 20 3-1 Experimental procedure 20 3-2 Instruments of sample preparation 24 3-3 Instruments of characterizations 31 Chapter 4、Results and Discussion 38 4-1 Fabrication of Cu2BaSnS4 thin-film through a vacuum process 38 4-2 S/Se composition effect in Cu2BaSnS4-xSex 52 Chapter 5、Summary and Conclusions 66 Appendix 68 Sample Information Sheet 68 Reference 70

    1. Tinoco, T., et al., Phase diagram and optical energy gaps for CuInyGa1− ySe2 alloys. 1991. 124(2).
    2. Ge, J., C.R. Grice, and Y.J.J.o.M.C.A. Yan, Cu-based quaternary chalcogenide Cu 2 BaSnS 4 thin films acting as hole transport layers in inverted perovskite CH 3 NH 3 PbI 3 solar cells. 2017. 5(6).
    3. Fthenakis, V.J.R. and S.E. Reviews, Sustainability of photovoltaics: The case for thin-film solar cells. 2009. 13(9).
    4. Binetti, S., A. Le Donne, and V.J.F.i.c. Trifiletti, New Earth-Abundant Thin Film Solar Cells Based on Chalcogenides. 2019. 7.
    5. Ito, K. and T.J.J.J.o.A.P. Nakazawa, Electrical and optical properties of stannite-type quaternary semiconductor thin films. 1988. 27(11R).
    6. Delbos, S.J.E.P., Kësterite thin films for photovoltaics: a review. 2012. 3.
    7. Woo, K., et al., Band-gap-graded Cu 2 ZnSn (S 1-x, Se x) 4 solar cells fabricated by an ethanol-based, particulate precursor ink route. 2013. 3.
    8. Li, J.B., V. Chawla, and B.M.J.A.M. Clemens, Investigating the role of grain boundaries in CZTS and CZTSSe thin film solar cells with scanning probe microscopy. 2012. 24(6).
    9. Wadia, C., et al., Materials availability expands the opportunity for large-scale photovoltaics deployment. 2009. 43(6).
    10. Patel, M. and A.J.P.B.C.M. Ray, Enhancement of output performance of Cu2ZnSnS4 thin film solar cells—A numerical simulation approach and comparison to experiments. 2012. 407(21).
    11. Adachi, S., Earth-abundant materials for solar cells: Cu2-II-IV-VI4 semiconductors. 2015: John Wiley & Sons.
    12. Tai, K.F., et al., Fill factor losses in Cu2ZnSn (SxSe1− x) 4 solar cells: insights from physical and electrical characterization of devices and exfoliated films. 2016. 6(3).
    13. Nishiwaki, S., et al., MoSe 2 layer formation at Cu (In, Ga) Se 2/Mo Interfaces in High Efficiency Cu (In1-xGa x) Se 2 Solar Cells. 1998. 37(1A).
    14. Walsh, A., et al., Kesterite thin‐film solar cells: Advances in materials modelling of Cu2ZnSnS4. 2012. 2(4).
    15. Chen, W.-C., et al., Fabrication of Cu2ZnSnSe4 solar cells through multi-step selenization of layered metallic precursor film. 2016. 618.
    16. Giraldo, S., et al., Progress and Perspectives of Thin Film Kesterite Photovoltaic Technology: A Critical Review. 2019. 31(16).
    17. Teymur, B., et al., Solution-Processed Earth-Abundant Cu2BaSn (S, Se) 4 Solar Absorber Using a Low-Toxicity Solvent. 2018. 30(17).
    18. McCarthy, C.L. and R.L.J.C.o.M. Brutchey, Solution Deposited Cu2BaSnS4–x Se x from a Thiol–Amine Solvent Mixture. 2018. 30(2).
    19. Shin, D., B. Saparov, and D.B.J.A.E.M. Mitzi, Defect engineering in multinary earth‐abundant chalcogenide photovoltaic materials. 2017. 7(11).
    20. Ge, J. and Y.J.J.o.M.C.C. Yan, Synthesis and characterization of photoelectrochemical and photovoltaic Cu 2 BaSnS 4 thin films and solar cells. 2017. 5(26).
    21. Chakraborty, R., et al., Colloidal Synthesis, Optical Properties, and Hole Transport Layer Applications of Cu2BaSnS4 (CBTS) Nanocrystals. 2019. 2(5).
    22. Shin, D., et al., Earth‐abundant chalcogenide photovoltaic devices with over 5% efficiency based on a Cu2BaSn (S, Se) 4 absorber. 2017. 29(24).
    23. Li, J., et al., Cation Substitution in Earth‐Abundant Kesterite Photovoltaic Materials. 2018. 5(4).
    24. Ge, J., Y. Yu, and Y.J.J.o.M.C.A. Yan, Earth-abundant trigonal BaCu 2 Sn (Se x S 1− x) 4 (x= 0–0.55) thin films with tunable band gaps for solar water splitting. 2016. 4(48).
    25. Hong, F., et al., Trigonal Cu 2-II-Sn-VI 4 (II= Ba, Sr and VI= S, Se) quaternary compounds for earth-abundant photovoltaics. 2016. 18(6).
    26. Ge, J., Y. Yu, and Y.J.A.E.L. Yan, Earth-Abundant Orthorhombic BaCu2Sn (Se x S1–x) 4 (x≈ 0.83) Thin Film for Solar Energy Conversion. 2016. 1(3).
    27. Shin, D., et al., BaCu2Sn (S, Se) 4: earth-abundant chalcogenides for thin-film photovoltaics. 2016. 28(13).
    28. Zhou, Y., et al., Efficient and stable Pt/TiO2/CdS/Cu2BaSn (S, Se) 4 photocathode for water electrolysis applications. 2017. 3(1).
    29. Shin, D., et al., Synthesis and characterization of an earth-abundant Cu2BaSn (S, Se) 4 chalcogenide for photoelectrochemical cell application. 2016. 7(22).

    無法下載圖示 本全文未授權公開
    QR CODE