簡易檢索 / 詳目顯示

研究生: 盧采辰
Lu, Cai-Chen
論文名稱: 鐵電光子晶體的光學性質
Some Optical Properties in Ferroelectric-based Photonic Crystals
指導教授: 吳謙讓
Wu, Chien-Jang
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 40
中文關鍵詞: 光子晶體鐵電溫度可調濾波器能帶間隙
英文關鍵詞: Photonic Crystal, Ferroelectric, Temperature Tuning, Filter, Band Gap
DOI URL: https://doi.org/10.6345/NTNU202203616
論文種類: 學術論文
相關次數: 點閱:243下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

在本文中,我們將研究以鐵電光子晶體為基礎的一些光學性質。我們數值研究有缺陷的介電光子晶體在含有鐵電缺陷的太赫茲(THz)濾波器性質。我們研究兩個光子晶體結構於我們的研究中。首先,我們考慮一個濾波器的結構,空氣air/(BA)ND(BA)N/air,其中B為石英,A為空氣,D為鐵電材料鉭酸鉀KTaO3(KTO),和N為堆疊數。我們研究以轉移矩陣法(TMM)為基礎計算出的透射響應的濾波性質。鉭酸鉀KTaO3(KTO)的介電常數是一個強大的溫度函數在太赫茲(THz)頻率,我們證明一個熱可調濾波器可以實現的,即信道頻率會隨著溫度的變化轉移。此外,鐵電缺陷的厚度在量測多通道濾波器時是一個重要參數。我們也證明出,增加厚度可明顯增加信道數。我們考慮的結構可因此被設計為可調式太赫茲(THz)和多通道濾波器的太赫茲(THz)光電子。第二,我們考慮多信道濾波器結構在一個有限的光子晶體設計中,air/(BA)ND(BA)N/air,其中A為氧化鎂MgO,B為鉭酸鉀KTaO3(KTO)。在此證明出信道數N的數量為N-1,特別的是信道頻率的溫度為可調式的。熱可調多通道濾波器技術使用在光子用途。最後,我們對於KTO/MgO在一個無限的光子晶體在光子能帶間隙(PBG)結構的變化進行研究。我們研究出光子能帶間隙(PBG)在溫度可調的影響。

In this thesis, we shall study some optical properties in ferroelectric-based photonic crystals (PCs). We numerically study the terahertz (THz) filtering properties for a defective dielectric photonic crystal containing a ferroelectric defect. There are two photonic crystal structures in our studies. First, we consider a filter structure, air/(BA)ND(BA)N/air, where B = quartz, A =air, D is a ferroelectric material of KTaO3 (KTO), and N is the stack number. We investigate the filtering properties based on the use of the transmittance response calculated by the transfer matrix method (TMM). With the permittivity of KTO being a strong function of the temperature at THz frequency, we show that a thermally tunable filter can be achieved, i.e., the channel frequency will be shifted as the temperature varies. In addition, the thickness of ferroelectric defect also is an important parameter in the determination of the number of multiple channels of a filter. We show that an increase in the thickness can significantly increase the number of channels. The considered structure can thus be designed as a THz tunable and multichannel filter which is of potential use in THz photonics. Second, we consider a design of multichannel filter structure for a finite PC, air/(AB)N/air, in which A is a dielectric of MgO and B is KTO. It is shown that the number of channels is just equal to N-1 and particularly the channel frequencies are temperature-tunable. The thermally tunable multichannel filter is of technical use in photonic applications. Finally, the temperature dependence of photonic band gap (PBG) structure for an infinite PC of KTO/MgO will be investigated. We will investigate how the PBG is affected by the temperature.

目錄 Contents 中文摘要 .............................................. i 英文摘要 .............................................. ii 致謝 .................................................. iii 目錄 .................................................. iv 第一章 緒論 1-1 鐵電材料簡介 ....................................... 1 1-2 鐵電材料應用 ....................................... 2 1-3 鐵電材料光子晶體簡介 ................................ 3 第二章 鐵電材料鉭酸鉀基本性質探討 2-1 鐵電材料鉭酸鉀的介紹 ................................ 4 第三章 含鐵電缺陷的光子晶體其缺陷模態的溫度關係 3-1 簡介 .............................................. 6 3-2 理論基礎 ........................................... 6 3-2-1 缺陷模態 ......................................... 6 3-2-2 基本方程式 ....................................... 7 3-3 結果與討論 ......................................... 8 3-4 結論 .............................................. 15 第四章 鐵電/介電光子晶體在多通道濾波器的溫度關係 4-1 簡介 .............................................. 16 4-2 理論基礎 ........................................... 16 4-2-1 轉移矩陣法(Transfer Matrix Method) ............... 16 4-3 結果與討論 ......................................... 18 4-4 結論 .............................................. 24 第五章 鐵電/介電光子晶體在光子能帶結構的溫度 5-1 簡介 .............................................. 25 5-2 理論基礎 ........................................... 25 5-2-1 布洛赫定理(Bloch Theorem) ........................ 25 5-3 結果與討論 ......................................... 26 5-4 結論 .............................................. 37 第六章 結論 ........................................... 38 參考文獻 .............................................. 39

參考文獻

[1] Xu. Yuhuan, Ferroelectric materials and their applications (Elsevier, 2013).
[2] K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2001).
[3] E. Yablonovitch, “Photonic band gap structures,” J. Optics & Photonics News 2(12), 27-28 (1991).
[4] P. S. J. Russell, “Photonic band gaps,” J. Appl. Phys world. 5(8), 37 (1992).
[5] C. N. Berglund and H. J. Braun, “Optical absorption in single-domain ferroelectric barium titanate,” J. Appl. Phys. Rev. 164, 790 (1967).
[6] D. J. Singh, “Stability and phonons of KTaO3,” J. Appl. Phys. Rev. B. 53(1), 176 (1996).
[7] H. Nmec, L. Duvillaret, F. Garet, P. Kuel, P. P. J. Richard, and D. Rauly, “Thermally tunable filter for terahertz range based on a one-dimensional photonic crystal with a defect,” J. Appl. Phys. 96, 4072–4075 (2004).
[8] J.-W. Liu, T.-W. Chang, and C.-J. Wu, “Filtering properties of photonic crystal dual-channel tunable filter containing superconducting defects,” J. Supercond. Novel Magn. 27, 67–72 (2014).
[9] Y.-K. Ha, Y.-C. Yang, J.-E. Kim, H. Y. Park, C.-S. Kee, H. Lim, and J.-C. Lee, “Tunable omnidirectional reflection bands and defect modes of a one-dimensional photonic band gap structure with liquid crystals,” Appl. Phys. Lett. 79, 15–17 (2001).
[10] V. Skoromets, H. Němec, C. Kadlec, D. Fattakhova-Rohlfing, and P. Kužel, “Electric-field-tunable defect mode in one-dimensional photonic crystal operating in the terahertz range,” Appl. Phys. Lett. 102, 241106 (2013).
[11] N. M. D’souza and V. Mathew, “Tunable filter using ferroelectric-dielectric periodic multilayer,” Appl. Opt. 54, 2187-2192 (2015).
[12] X. Hu, P. Jiang, and Q. Gong, “Tunable multichannel filter in one-dimensional nonlinear ferroelectric photonic crystals,” J. Opt. A 9, 108 (2007).
[13] Y. Fu, J. Zhang, X. Hu, and Q. Gong, “Electro-optic tunable multi-channel filter in two-dimensional ferroelectric photonic crystals,” J. Opt. 12, 075202 (2010).
[14] K. L. Jim, D. Y. Wang, C. W. Leung, C. L. Choy, and H. L. W. Chan, “One-dimensional tunable ferroelectric photonic crystals based on Ba0.7Sr0.3TiO3 / MgO multilayer thin films,” J. Appl. Phys. 103, 083107 (2008).
[15] T.-C. King, D.-X. Chen, W.-C. Lin, C.-J. Wu. “Photonic band gap structure for a ferroelectric photonic crystal at microwave frequencies,” Appl. Opt. 54, 8738-8741 (2015).
[16] J. S. Foresi, P. R. Villeneuve, J. Ferrera, E. R. Thoen, G. Steinmeyer, S. Fan, J. D. Joannopoulos, L. C. Kimerling, H. I. Smith ,and E. P. Ippen, “Photonic band gap microcavities in optical waveguides,” J. Appl. Nature. 390, 143 (1997)
[17] H. S. Sozuer, J. W Haus, and R. Inguva, “There have been some reports recently of a photonic band gap in a simple cubic geometry,” J. Appl. Phys. Rev. B. 45, 13, 962 (1992)
[18] K. M. Ho, C. T. Chan and C. M. Soukoulis, “Existence of a photonic band gap in periodic dielectric structures,” J. Appl. Phys. Rev. Lett. 65, 3152 (1990).

下載圖示
QR CODE