簡易檢索 / 詳目顯示

研究生: 沈時慶
Shen, Shih-Ching
論文名稱: 以新型規劃法與可變空間理論評估人機協作對於汽車裝配工廠產能與利潤最佳化
Evaluating in Human-Robot Collaboration for Automotive Assembly Plant Capacity and Profit Optimization Based on the De Novo Programming and Changeable Space Theory
指導教授: 李景峰
Li, Jeen-Fong
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 78
中文關鍵詞: 工業4.0人機協作智慧製造自動化生產工業機器人De Novo 規劃法可變空間理論
英文關鍵詞: Industrial 4.0, Human-Robot collaboration, Industrial robot, Changeable Space Theory
DOI URL: http://doi.org/10.6345/THE.NTNU.DIE.048.2018.E01
論文種類: 學術論文
相關次數: 點閱:271下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    近年來隨著全球人口老化問題日益嚴重以及人事成本持續增長,造成勞動市場人力短缺、生產製造成本持續上升。為了解決缺工問題、提升生產製造效率並且降低成本,全球製造業者紛紛加速導入高度自動化生產模式並朝向工業4.0之智慧工廠領域發展以達成產能與利潤最佳化,而智慧型機器人是實現智慧工廠的重要元素之一。雖然汽車裝配工業是目前機器人自動化應用最為廣泛的領域,然而隨著生產製造流程日益複雜以及市場上少量多樣化的生產製造模式需求,再加上工業4.0之智慧製造的趨勢已形成,傳統機器人已漸漸無法符合當前彈性製造的需求,因此人類與機器人能在共同空間合作完成更複雜的生產流程需求已形成帶動人機協作於智慧製造發展的重要趨勢。基於安全規範考量因素,傳統工業機器人必須使用安全防護圍籬與人隔離且傳統機器人需要繁雜的編程與設定,能夠做的也只是既定程序之內高重複度簡單的工作,且生產線一旦需要變動所需付出的產線重新配置及規劃費用相當高昂,為了有效解決汽車生產線目前所面臨的產線最佳化問題,並協助汽車裝配產線成功轉型到全面智慧製造的生產模式,本研究擬以新型規劃法(De Novo programming)與可變空間理論(Changeable Space Theory)評估人機協作對於提升生產效率與利潤最佳化之分析,本研究結果將可作為汽車製造業評估導入自動化之人機協作的效益以達成產能與利潤最佳化。
    關鍵字 : 工業4.0、人機協作、智慧製造、自動化生產、工業機器人、
    De Novo 規劃法、可變空間理論

    Abstract
    Along with labor cost continue growing as well as global population aging issue, cause labor shortage and rising production costs issue. In order to improve production efficiency and cost reduction, global manufacturers have accelerated the introduction of automated production processes to achieve capacity and profit optimization. The intelligent robot is one of the important elements to achieve high degree of automation. The automotive industry is currently the most widely used of robot automation applications. However, the increasingly complex production processes and a small number of diversified manufacturing model needs, as well as the industry 4.0 wisdom manufacturing trend has been formed, traditional robots unable to meet the current demand for flexible manufacturing. Thus, human and robots can work together in a common space to complete more complex production process have led to the development of human-robot collaboration in the wisdom of the development of an important trend. For safety consideration, traditional robot must be worked with safety fence environment and the traditional robot needs to set with complicated programming that only possible to for high repeatability and simple work within the established procedure. Traditional robots have been unable to meet the current demand for flexible manufacturing, thus, human and robots collaboration has been become an important trend.
    Keywords: Industrial 4.0、Human-Robot collaboration、Smart manufacturing、Industrial robot、De Novo Programming、Changeable Space Theory.

    摘要 i Abstract ii Table of Contents iii List of Table v List of Figure vi Chapter 1 Introduction 1 1.1 Research Background 1 1.2 Research Motivations 2 1.3 Research Purposes and Limitations 4 1.4 Research Method and Framework 6 Chapter 2 Literature Review 9 2.1 Capacity Planning 9 2.2 Flexible Manufacturing System (FMS) 12 2.3 Changeable Space and Decision Making 18 2.4 Human-Robot Collaboration 20 2.5 Industrial 4.0 24 Chapter 3 Research Methods 27 3.1 Multi-Objective Decision Making 27 3.2 Designed the optimal system and De Novo Programming 32 3.3 The Final Testing Capacity Planning Formulation Optimization 34 3.4 The Formulation of Changeable Space Programming 35 Chapter 4 Empirical Study 39 4.1 Automotive Manufacturing Flow Chart 41 4.2 The De Novo Programming 42 4.3 Changeable Parameters with MOP 52 Chapter 5 Discussion 61 5.1 Discussion 61 5.2 The Managerial Implications 65 5.3 The Difference Between De Novo Programming and Changeable Space 68 Chapter 6 Conclusion 71 Reference 73

    Reference
    Agnetis, A., Pacifici, A., Rossi, F., Lucertini, M., Nicoletti, S., Nicolo, F., . . . Pesaro, E. (1997). Scheduling of flexible flow lines in an automobile assembly plant. European Journal of Operational Research, 97(2), 348-362.
    AlGeddawy, T. (2017). A New Model of Modular Automation Programming in Changeable Manufacturing Systems. Procedia Manufacturing, 11, 198-206.
    Berman, O., Ganz, Z., & Wagner, J. M. (1994). A stochastic optimization model for planning capacity expansion in a service industry under uncertain demand. Naval Research Logistics (NRL), 41(4), 545-564.
    Bortolini, M., Ferrari, E., Gamberi, M., Pilati, F., & Faccio, M. (2017). Assembly system design in the Industry 4.0 era: a general framework. IFAC-PapersOnLine, 50(1), 5700-5705.
    Charnes, A., & Cooper, W. W. (1961). Management models and industrial applications of linear programming. Retrieved from
    Chen, C.-S., Mestry, S., Damodaran, P., & Wang, C. (2009). The capacity planning problem in make-to-order enterprises. Mathematical and Computer Modelling, 50(9), 1461-1473.
    Chen, J. K., & Tzeng, G.-H. (2009). Perspective strategic alliances and resource allocation in supply chain systems through the De Novo programming approach. International Journal of Sustainable Strategic Management, 1(3), 320-339.
    Chen, J. K. C., & Tzeng, G.-H. (2009). Perspective strategic alliances and resource allocation in supply chain systems through the De Novo programming approach. International Journal of Sustainable Strategic Management, 1(3), 320-339.
    Chianglin, C. Y., Lai, T. C., & Yu, P. L. (2007). Linear Programming Models With Changeable Parameters—Theoretical Analysis On" Taking Loss At The Ordering Time And Making Profit At The Delivery Time". International Journal of Information Technology & Decision Making, 6(04), 577-598.
    Chien, C.-F., Dou, R., & Fu, W. (2017). Strategic capacity planning for smart production: Decision modeling under demand uncertainty. Applied Soft Computing, 68, 900-909.
    Colledani, M., Bolognese, L., Ceglarek, D., Franchini, F., Marine, C., & Mistry, A. (2015). Multi-objective Early-stage Design of Automotive Hybrid Assembly Lines. Procedia CIRP, 28(Supplement C), 125-130.
    Davidow, W. H., & Malone, M. S. (1992). The virtual corporation: Harper Collins New York.
    de Gea Fernández, J., Mronga, D., Günther, M., Knobloch, T., Wirkus, M., Schröer, M., . . . Kirchner, F. (2017). Multimodal sensor-based whole-body control for human–robot collaboration in industrial settings. Robotics and Autonomous Systems, 94(Supplement C), 102-119.
    Friesz, T. L., Tourreilles, F. A., Han, A. F.-W., & Fernandez, J. E. (1980). Comparison of multicriteria optimization methods in transport project evaluation (abridgement). Transportation Research Record(751).
    Gale, D., Kuhn, H. W., & Tucker, A. W. (1951). Linear programming and the theory of games. Activity analysis of production and allocation, 13, 317-335.
    Gumasta, K., Kumar Gupta, S., Benyoucef, L., & Tiwari, M. K. (2011). Developing a reconfigurability index using multi-attribute utility theory. International Journal of Production Research, 49(6), 1669-1683.
    Gyulai, D., Kádár, B., & Monosotori, L. (2015). Robust production planning and capacity control for flexible assembly lines. IFAC-PapersOnLine, 48(3), 2312-2317.
    Gyulai, D., Kádár, B., & Monostori, L. (2014). Capacity Planning and Resource Allocation in Assembly Systems Consisting of Dedicated and Reconfigurable Lines. Procedia CIRP, 25(Supplement C), 185-191.
    Hax, A., & Candea, D. (1984). Production and inventory management, 1984. In: Prentice-Hall, Englewood Cliffs, NJ.
    Huang, H.-S., Larbani, M., & Yu, P.-L. (2012). Quantification and applications of identification spheres. Human Systems Management, 31(2), 97-109.
    Huang, J.-J., & Tzeng, G.-H. (2014). New thinking of multi-objective programming with changeable space–in search of excellence. Technological and Economic Development of Economy, 20(2), 254-273.
    Huang, J.-J., Tzeng, G.-H., & Ong, C.-S. (2005). Motivation and resource-allocation for strategic alliances through the DeNovo perspective. Mathematical and Computer Modelling, 41(6), 711-721.
    Hwang, C.-L., Paidy, S. R., Yoon, K., & Masud, A. S. M. (1980). Mathematical programming with multiple objectives: A tutorial. Computers & Operations Research, 7(1), 5-31.
    Hwang, C.-L., & Yoon, K. (2012). Multiple attribute decision making: methods and applications a state-of-the-art survey (Vol. 186): Springer Science & Business Media.
    Khorramshahgol, R., & Steiner, H. M. (1988). Resource analysis in project evaluation: a multicriteria approach. Journal of the Operational Research Society, 795-803.
    Koren, Y., Heisel, U., Jovane, F., Moriwaki, T., Pritschow, G., Ulsoy, G., & Van Brussel, H. (1999). Reconfigurable manufacturing systems. CIRP Annals, 48(2), 527-540.
    Lafou, M., Mathieu, L., Pois, S., & Alochet, M. (2016). Manufacturing System Flexibility: Sequence Flexibility Assessment. Procedia CIRP, 57(Supplement C), 229-234.
    Lambrechts, F., Grieten, S., Bouwen, R., & Corthouts, F. (2009). Process Consultation Revisited Taking a Relational Practice Perspective. The Journal of Applied Behavioral Science, 45(1), 39-58.
    Lambrechts, F., Sips, K., Taillieu, T., & Grieten, S. (2009). Virtual organizations as temporary organizational networks: boundary blurring, dilemmas, career characteristics and leadership.
    Larbani, M., & Yu, P. L. (2009). Two-person second-order games, Part 2: Restructuring operations to reach a win-win profile. Journal of Optimization Theory and Applications, 141(3), 641-659.
    Larbani, M., & Yu, P. L. (2012). Decision making and optimization in changeable spaces, a new paradigm. Journal of Optimization Theory and Applications, 155(3), 727-761.
    Larbani, M., & Yu, P. L. (2014). Effective Decision Making in Changeable Spaces, Covering and Discovering Processes: A Habitual Domain Approach. In Human-Centric Decision-Making Models for Social Sciences (pp. 131-161): Springer.
    Leinbach, T. R., & Cromley, R. G. (1983). A goal programming approach to public investment decisions: a case study of rural roads in Indonesia. Socio-Economic Planning Sciences, 17(1), 1-10.
    Li, H. L., & Yu, P. L. (1994). Optimal competence set expansion using deduction graphs. Journal of Optimization Theory and Applications, 80(1), 75-91.
    Liou, J. J., & Tzeng, G.-H. (2012). Comments on “Multiple criteria decision making (MCDM) methods in economics: an overview”. Technological and Economic Development of Economy, 18(4), 672-695.
    Martínez-Costa, C., Mas-Machuca, M., Benedito, E., & Corominas, A. (2014). A review of mathematical programming models for strategic capacity planning in manufacturing. International Journal of Production Economics, 153, 66-85.
    Massam, B. H. (1988). Multi-criteria decision making (MCDM) techniques in planning. Progress in planning, 30, 1-84.
    Mittal, K. K., & Jain, P. K. (2014). Responsiveness measurement of reconfigurable manufacturing system. DAAAM International Scientific Book.
    Nuttman Shwartz, O., & Ranz, R. (2017). Human rights discourse during a short-term field placement abroad: An experience of social work students from Israel and India. International Social Work, 60(2), 283-296.
    Paraskevopoulos, D., Karakitsos, E., & Rustem, B. (1991). Robust capacity planning under uncertainty. Management Science, 37(7), 787-800.
    Po, L. Y., & Zhang, D. (1990). A foundation for competence set analysis. Mathematical Social Sciences, 20(3), 251-299.
    Po, L. Y., & Zhang, D. (1992). Optimal expansion of competence sets and decision support. Infor, 30(2), 68.
    Prinz, C., Morlock, F., Freith, S., Kreggenfeld, N., Kreimeier, D., & Kuhlenkötter, B. (2016). Learning Factory Modules for Smart Factories in Industrie 4.0. Procedia CIRP, 54(Supplement C), 113-118.
    Renna, P. (2010). Capacity reconfiguration management in reconfigurable manufacturing systems. The International Journal of Advanced Manufacturing Technology, 46(1-4), 395-404.
    RENZI, C., Leali, F., Cavazzuti, M., & Andrisano, A. (2014). A review on artificial intelligence applications to the optimal design of dedicated and reconfigurable. 2014. 67-45, Tahoma. Adv Manuf Technol, 403-418.
    Renzi, C., Leali, F., Cavazzuti, M., & Andrisano, A. O. (2014). A review on artificial intelligence applications to the optimal design of dedicated and reconfigurable manufacturing systems. The International Journal of Advanced Manufacturing Technology, 72(1-4), 403-418.
    Scholer M.Sc, M., & Müller, P. D. I. R. (2017). Modular configuration and control concept for the implementation of human-robot-cooperation in the automotive assembly line. IFAC-PapersOnLine, 50(1), 5694-5699.
    Solimanpur, M., Vrat, P., & Shankar, R. (2005). An ant algorithm for the single row layout problem in flexible manufacturing systems. Computers & Operations Research, 32(3), 583-598.
    Teng, J.-Y., & Tzeng, G.-H. (1996). A multiobjective programming approach for selecting non-independent transportation investment alternatives. Transportation Research Part B: Methodological, 30(4), 291-307.
    Tzeng, G.-H. (2003). Multiple objective decision making in past, present, and future. In Multi-Objective Programming and Goal Programming (pp. 65-76): Springer.
    Verter, V., & Dincer, M. C. (1995). Facility location and capacity acquisition: an integrated approach. Naval Research Logistics (NRL), 42(8), 1141-1160.
    Wang, H. F. (2017). Theory of linear poroelasticity with applications to geomechanics and hydrogeology: Princeton University Press.
    Wang, X. V., Kemény, Z., Váncza, J., & Wang, L. (2017). Human–robot collaborative assembly in cyber-physical production: Classification framework and implementation. CIRP Annals, 66(1), 5-8.
    Wiendahl, H. P., ElMaraghy, H. A., Nyhuis, P., Zäh, M. F., Wiendahl, H. H., Duffie, N., & Brieke, M. (2007). Changeable Manufacturing - Classification, Design and Operation. CIRP Annals, 56(2), 783-809.
    Wojtara, T., Uchihara, M., Murayama, H., Shimoda, S., Sakai, S., Fujimoto, H., & Kimura, H. (2009). Human–robot collaboration in precise positioning of a three-dimensional object. Automatica, 45(2), 333-342.
    Yigit, A. S., & Allahverdi, A. (2003). Optimal selection of module instances for modular products in reconfigurable manufacturing systems. International Journal of Production Research, 41(17), 4063-4074.
    Yu, P.-L. (1991). Habitual domains. Operations Research, 39(6), 869-876.
    Yu, P.-L., & Chen, Y.-C. (2010). Blinds, fuzziness and habitual domain tools in decision making with changeable spaces. Human Systems Management, 29(4), 231-242.
    Yu, P.-L., & Chen, Y.-C. (2012). Dynamic multiple criteria decision making in changeable spaces: from habitual domains to innovation dynamics. Annals of Operations Research, 197(1), 201-220.
    Yu, P. L. (1980). Behavior bases and habitual domains of human decision/behavior—concepts and applications: Springer.
    Yu, P. L. (1982). Introduction to Decision Dynamics, Second Order Games and Habitual Domains.
    Yu, P. L. (1990). Forming Winning Strategies− An Integrated Theory of Habitual Domains Springer-Verlag. Berlin Heidelberg New York.
    Yu, P. L., & Chianglin, C.-Y. (2006). Decision traps and competence dynamics in changeable spaces. International Journal of Information Technology & Decision Making, 5(01), 5-18.
    Yu, P. L., Haimes, Y. Y., Leach, M. R., Chankong, V., Haimes, Y. Y., Thadathil, J., . . . Gal, T. (1985). Decision making with multiple objectives. Lecture Notes in Economics and Mathematical Systems, 242.
    Yu, P. L., & Larbani, M. (2009). Two-person second-order games, Part 1: formulation and transition anatomy. Journal of Optimization Theory and Applications, 141(3), 619-639.
    Yu, P. L., & Zhang, D. (1989). Competence Set Analysis for Effective Decision-Making. Control-Theory and Advanced Technology, 5(4), 523-547.
    Zeleny, M. (1998). Multiple criteria decision making: Eight concepts of optimality. Human Systems Management, 17(2), 97-107.
    ZelenÝ, M. (1990). Optimizing given systems vs. designing optimal systems: The De Novo programming approach. International journal of general systems, 17(4), 295-307.
    Zorzini, M., Corti, D., & Pozzetti, A. (2008). Due date (DD) quotation and capacity planning in make-to-order companies: Results from an empirical analysis. International Journal of Production Economics, 112(2), 919-933.

    無法下載圖示 本全文未授權公開
    QR CODE