研究生: |
呂柏緯 Po Wei Lu |
---|---|
論文名稱: |
奈米幾何結構對矽晶薄膜太陽能電池光學吸收之影響與研究 Effect of nanostructured architecture on the enhanced optical absorption in silicon thin-film solar cells |
指導教授: |
李亞儒
Lee, Ya-Ju |
學位類別: |
碩士 Master |
系所名稱: |
光電工程研究所 Graduate Institute of Electro-Optical Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 44 |
中文關鍵詞: | 太陽能電池 、奈米結構 、光學吸收率 |
英文關鍵詞: | solar cell, nanostructure, optical absorption |
論文種類: | 學術論文 |
相關次數: | 點閱:232 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文是利用有限時域差分法對於2μm厚之薄膜矽晶提出三種不同之表面奈米結構(包含:奈米柱、奈米錐與奈米鏡陣列)並對其光學吸收提升進行數值計算。相較於奈米柱與奈米錐陣列,奈米鏡陣列展示出了最高能量轉換效率。此結果主因於奈米鏡陣列具有將入射光耦合至共振模態的能力,使得入射光子於長波長區間可增加其光學路徑。而本研究中,奈米柱、奈米錐與奈米鏡陣列其最佳能量轉換效率分別為η=17.4%、18.8%與22.0%。而奈米柱、奈米錐與奈米鏡陣列相對於具有抗反射模之平面矽晶薄膜來說,其轉換效率分別提升為26.1%、36.2%與59.4%。這些發現顯示出矽晶薄膜太陽能電池於其表面製作奈米結構將可提升光學之吸收。
We apply the finite difference time domain method to numerically calculate the enhanced optical absorption of three nanostructures (i.e., nanorod, nanocone, and nanolens arrays) that were decorated on the surface of 2 µm thick crystal silicon thin films. Compared with the nanorod and nanocone arrays, the nanolens array exhibits the highest power conversion efficiency. This result is mainly attributed to the natural capability of the nanolens array to optically couple incident light into in-plane guided modes, which increases the optical path of the incident photons in the long-wavelength regime. The power conversion efficiencies of the optimized nanorod, nanocone, and nanolens arrays are =17.4%, 18.8%, and 22.0%, respectively. These efficiencies correspond to enhancements of 26.1%, 36.2%, and 59.4% for the nanorod, nanocone, and nanolens arrays, respectively, compared with a planar Si thin-film with a standard quarter-wavelength antireflection layer. These findings show promises for the nanostructured design of silicon thin-film solar cells that exhibit enhanced optical absorption.
[1]Tsakalakos, L., “Nanostructures for photovoltaics,” Mater. Sci. Eng.,Vol. 62, No. 6, 175–189, 2008.
[2]Lewis, N. S., “Toward cost-effective solar energy use,” Science,Vol.315, No. 5813, 798–801, 2007.
[3]Miles, R. W., G. Zoppi, and I. Forbes, “Inorganic photovoltaic cells,” Materials today, Vol. 10, No. 11, 20–27, 2007.
[4]Hu, L., and G. Chen, “Analysis of Optical Absorption in Silicon Nanowire Arrays for Photovoltaic Applications,” Nano Lett., Vol. 7, No. 11, 3249–3252, 2007.
[5]Zhang, X. , S. Gao, and S. He, “Optimal Design of a Silicon on Insulator Nanowire Waveguide for Broadband0 Wavelength Conversion,” Progress In Electromagnetics Research, Vol. 89, 183-198, 2009.
[6]Li, J., H.Y. Yu, S. M. Wong, X. Li, G. Zhang, P. G.-Q. Lo, and D.-L. Kwong, “Design guidelines of periodic Si nanowire arrays for solar cell application,” Appl. Phys. Lett., Vol. 95, No. 24, 243113-1—243113-3, 2009.
[7]Kuang, Y., K. H. M. van der Werf, H. M. Karine, Z. S. Houweling,and R. E. I. Schropp, “Nanorod solar cell with an ultra thin a-Si:H absorber layer,” Appl. Phys. Lett., Vol. 98, No. 11, 113111-1—113111-3, 2011.
[8]Lin, C. Lin, N. Huang, and M. L. Povinelli, “Effect of aperiodicity on the broadband reflection of silicon nanorod structures for photovoltaics,” Opt. Express, Vol. 20, No. S1, A125-A132, 2012.
[9]Zhu, J., Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett., Vol. 9, No. 1, 279–282, 2009.
[10]Sahoo, K. C., M. K. Lin, E. Y. Chang, T. B. Tinh, Y. Li, and J. H. Huang, “Silicon nitride nanopillars and nanocones formed by nickel nanoclusters and inductively coupled plasma etching for solar cell application,” Jpn. J. Appl. Phys., Vol. 41, No. 12, 126508—1126508-4, 2009.
[11]Lu, Y., and A. Lal,” High efficiency order silicon nano conical frustum array solar cell by self-powered parallel electron lithography,” Nano Lett., Vol. 10, No. 11, 4651-4656, 2010.
[12]Lee, S. H., X.-G. Zhang, C. M. Parish, H. N. Lee, D. B. Smith, Y. He, and J. Xu, “Nanocone tip-film solar cells with efficient charge transport,” Adv. Mater., Vol. 23, No. 38, 4381-4385, 2011.
[13]Li, K., M. I. Stockman, and D. J. Bergman, “Self-similar chain of metal nanospheres as an efficient nanolens,” Phys. Rev. Lett., Vol. 91, No. 22, 227402-1—227402-4, 2003.
[14]Zhu, J., C.-M. Hsu, Z. Yu, S. Fan, and Y. Cui, “Nanodome Solar Cells with Effcient Light Management and Self-Cleaning,” Nano Lett., Vol. 10, No. 6, 1979-1984, 2010.
[15]Kim, B., J. Bang, S. Jang, D. Kim, and J. Kim, “Surface texturing of GaAs using a nanosphere lithography technique for solar cell applications,” Thin Solid Films, Vol. 518, No. 22, 6583-6586, 2010.
[16]Yao, Y.-C., M.-T. Tsai, H.-C. Hsu, L.-W. She, C.-M. Cheng, Y.-C. Chen, C.-J. Wu, and Y.-J. Lee, “Use of two-dimensional nanorod arrays with slanted ITO film to enhance optical absorption for photovoltaic applications,” Opt. Express, Vol. 20, No. 4, 3479-3489, 2012.
[17]M.A. Green, K. Emery, Y. Hisikawa, and W. Warta, “Solar Cell Efficiency Tables (Version 33),” Progress in Photovoltaics: Research and Applications. Vol. 17, No. 1, 85-94, 2009.
[18]蔡進譯,「超高效率太陽電池 ‐ 從愛因斯坦的光電效應談起」,物理雙月刊,27 卷,5 期,2005 。
[19]施敏著,半導體元件物理與製作技術,黃調元譯,高立出版社, 2007,ISBN 9789573015130.
[20]E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Physical Review Letters. Vol. 58, No. 20, 2059, 1987.
[21]S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Physical Review Letters. Vol. 58, No. 23, 2486, 1987.
[22]“Fundamentals of Photonics,” Publisher: John Wiley & Sons, CH7 265-286, 1st edition, August 15, 1991
[23]張高德、欒丕綱,“光子晶體簡介”,光學工程,第九十五期95.09
[24]S. Fahr, C. Ulbrich, T. Kirchartz, U. Rau, C. Rockstuhl, and F. Lederer, “Rugate filter for light-trapping in solar cells,” Optics Express. Vol. 16, No. 13, 9332-43 , 2008.
[25]D. Zhou and R. Biswas, “Photonic crystal enhanced light-trapping in thin film solar cells,” Journal of Applied Physics. Vol. 103, No. 9, 093102, 2008
[26]A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Physical Review A (Atomic, Molecular, and Optical Physics). Vol. 78, No. 2, 023825, 2008
[27]P. Bermel, C. Luo, L. Zeng, L.C. Kimerling, and J.D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Optics Express. Vol. 15, No. 25, 16986-17000, 2007.
[28]L. Zeng, P. Bermel, Y. Yi, B.A. Alamariu, K.A. Broderick, J. Liu, C. Hong, X. Duan, J. Joannopoulos, and L.C. Kimerling, “Demonstration of enhanced absorption in thin film Si solar cells with textured photonic crystal back reflector,” Applied Physics Letters. Vol. 93, No. 22, 221105, 2008.
[29]K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwell’s equation in isotropic media,” IEEE Trans. Antennas Propagat., vol.14, No.3, pp.300-307, May 1966.
[30]A. Taflove, Computational Electrodynamics The Finite Difference Time-Domain Method,1995.
[31]J. P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Computat. Phys., vol. 114, pp. 185-200, 1994.
[32]Z. S. Sacks, D.M. Kingsland, R. Lee, and J. F. Lee, “A perfectly matched anisotropic absorber for use as an absorbing boundary condition,” IEEE Trans. Antennas and Propagat., vol. 43, pp. 1460 –1463, Dec. 1995.
[33]S. D. Gedney, “An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,” IEEE Trans. Antennas and Propagat., vol. 44, pp. 1630 -1639, Dec. 1996.
[34]A. Taflove,"Computational Electrodynamics: The Finite Difference Time Domain Method.". Norwood, MA: Artech House, 1995
[35]J.-P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” Journal of Computational Physics. Vol. 127, No. 2, 363-379 (1996).
[36]Aspnes, D. E., “Optical properties of thin films,” Thin Solid Films, Vol.89, No. 3, 249–262, 1982.
[37]Smestad, G. P., Optoelectronics of Solar Cells, SPIE Press, Washington, 2002.
[38]Bermel, P., C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express, Vol.15, No. 20, 16986–17000, 2007.
[39]ASTMG173–03, Standard Tables for Reference Solar
Spectral Irradiances: Direct Normal and Hemispherical on 37 degree Tilted Surface, ASTM International, 2005.
[40]Chen, F., Q. Shen, and L. Zhang, “Electromagnetic Optimal Design and Preparation of Broadband Ceramic Radome Material with Graded Porous Structure,” Progress In Electromagnetics Research, Vol. 105, 445-461, 2010.
[41]Zhou, L., Y. Pei, R. Zhang, and D. Fang, “Optimal Design for High-Temperature Broadband Radome Wall with Symmetrical Graded Porous Structure,” Progress In Electromagnetics Research, Vol. 127, 1-14, 2012.
[42]Palik, E. D., Handbook of optical constants of solids, Academic Press, New York, 1998.
[43]Zhu, B., Z. Wang, C. Huang, Y. Feng, J. Zhao, and T. Jiang,“Polarization insensitive metamaterial absorber with wide incident angle,” Progress In Electromagnetics Research, Vol. 101, 231-239, 2010.
[44]He, X. J., Y. Wang, J. Wang, T. Gui, and Q. Wu, “Dual-band terahertz metamaterial absorber with polarization insensitivity and wide incident angle,” Progress In Electromagnetics Research, Vol. 115, 381-397, 2011.
[45]Huang, L. and H. Chen, “Multi-band and polarization insensitive metamaterial absorber,” Progress In Electromagnetics Research, Vol. 113, 103-110, 2011.