簡易檢索 / 詳目顯示

研究生: 張辰宇
論文名稱: 曲率調控羅丹明6G與氧化鋅奈米柱同調隨機雷射系統之閥值研究
Curvature-controlled thresholds of coherent random laser in Rhodamin 6G with ZnO nanorods
指導教授: 李亞儒
學位類別: 碩士
Master
系所名稱: 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 43
中文關鍵詞: 隨機雷射曲率調控閥值氧化鋅奈米柱羅丹明6G
英文關鍵詞: Random Laser, Curvature Control Threshold, Zinc Oxide Nanorods, Rhodamin 6G
DOI URL: https://doi.org/10.6345/NTNU202202399
論文種類: 學術論文
相關次數: 點閱:143下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

本論文使用水熱法成長氧化鋅奈米柱陣列,並整合羅丹明6G(Rhodamin 6G)增益介質,透過短脈衝雷射激發來產生隨機雷射(random laser)。藉由無序氧化鋅奈米柱陣列散射,R6G出射光子其輻射強度隨著外加脈衝雷射激發能量的改變,主要可分成三種不同光子輻射區間,分別為自發輻射(spontaneous emission)、放大自發輻射(amplified spontaneous emission, ASE)及具同調性(coherent)的隨機雷射輻射。此外,產生隨機雷射的臨界激發閥值,與氧化鋅奈米柱陣列的外在表徵有強關聯性。我們進一步地將氧化鋅奈米柱陣列生長在可撓曲之軟性基板; 藉由改變基板之彎曲曲率,有效地改變R6G出射光子與氧化鋅奈米柱陣列間的碰撞平均自由路徑(mean free path, MFP),進而調控該隨機雷射系統的臨界激發閥值。我們相信該新穎閥值可調控式隨機雷射,在建築上或管線監控中,將有很大的產業利用性,也將近一步地擴充無序隨機散射雷射的相關應用。

We have demonstrated a random laser that can be brought above and below the threshold for different lasing emissions by simple changes in the curvature of flexible PI substrate underneath, and that creates a lasing emission with curvature-controllable optical spectra. In this study, the ZnO nanorods synthesized by the hydrothermal method was randomly distributed on the flexible PI substrate to serve as optical scattering centers, and the gain material of rhodamin 6G (R6G) was then spin-coated to cover the entire ZnO nanorods. Consequently, by bending different curvatures on the flexible PI substrate to select an appropriate mean-free-path (MFP) for the emitted photons interacting with the ZnO nanorods, the tunable random laser can be designed and shows different spectral behaviors. This laser may find specific applications, for example a remote sensor to monitor the deformation of pipes within the buildings, and explore the functionality of disorder based photonic devices.

致謝 i 中文摘要 ii Abstract iii 目錄 iv 圖目錄 vii 表目錄 ix 第一章 序論 1 1.1 前言 1 1.2 研究動機 1 1.3 文獻回顧 2 第二章 實驗原理 4 2.1 雷射基本原理 4 2.1.1 傳統雷射原理 4 2.1.2 隨機雷射原理 5 2.2 羅丹明6G(R6G) 7 2.3 光激發螢光發光原理 9 2.4 氧化鋅之材料特性 10 2.5 射頻磁控濺鍍原理 11 2.6 掃描式電子顯微鏡 15 第三章 實驗流程與設備 18 3.1 樣品製作流程 18 3.2 濺鍍系統 18 3.3 氧化鋅水熱法製備流程 19 3.4 隨機雷射量測系統 20 3.5 拉曼光譜 22 第四章 結果與討論 24 4.1 氧化鋅奈米柱的材料特性分析 24 4.1.1 氧化鋅奈米柱的拉曼光譜與掃描式電子顯微鏡 24 4.1.2 氧化鋅奈米柱的螢光光譜、等效折射率與消光係數 25 4.2 羅丹明6G的螢光光譜與吸收光譜 27 4.3 同調隨機雷射 30 4.4 穿透光譜與平均自由路徑 32 4.5 彎曲樣品的示意圖與曲率推算公式 34 4.6 不同曲率下的穿透光譜及平均自由路徑 35 4.7 不同曲率下隨機雷射螢光光譜、閥值及傅立葉轉換 36 4.8 拉伸次數對閥值的影響 39 第五章 結論 41 第六章 參考文獻 42

[1] Florian M. Zehentbauer , Claudia Moretto , Ryan Stephen , Thangavel Thevar , John R. Grilchrist , Dubravka Pokrajac , Katherine L. Richard , Johannes Kiefer, “Fluorescence spectroscopy of Rhodamine 6G: Concentration and solvent effects,” Spectrochimica Acta Part A: Molecular and biomolecular Spectroscopy 121 (2014) 147-151.
[2] F. Luan, B. Gu, A. S. L. Gomes, K. T. Yong, S. Wen, and P. N. Prasad, “Lasing in nanocomposite random media,” Nano Today 10(2), 168–192 (2015).
[3] H. E. Türeci, L. Ge, S. Rotter, and A. D. Stone, “Strong interactions in multimode random lasers,” Science 320(5876), 643–646 (2008).
[4] A. Tulek, R. C. Polson, and Z. V. Vardeny, “Naturally occurring resonators in random lasing of π-conjugated polymer films,” Nat. Phys. 6(4), 303–310 (2010).
[5] Diederik S. Wiersma, “The physics and applications of random lasers, ” Nature Physics 4, 359 - 367 (2008)
[6] S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. Lopez, “Resonance-driven random lasing,” Nat. Photonics 2(7), 429–432 (2008).
[7] U. Brackmann Lambdachrome Laser Dye, third ed.,Lambda Physik AG, Goettingen, 2000
[8] 楊寶賡, “雷射工程, ” 新文京開發, 第32-40頁
[9] http://www.lasertech.tw/index.php
[10] S. Gottardo, R. Sapienza, P. D. Garcia, A. Blanco, D. S. Wiersma, and C. Lopez, “Resonance-driven random lasing,” Nat. Photonics 2(7), 429–432 (2008).
[11] 郭家豪。2009。可雙光子調控隨機雷射於染料擦摻雜聚合物分散奈米液晶顆粒混合薄膜。成功大學物理研究所碩論。台南。
[12] Meng, Xiangeng, 2008, Studies on Novel Light Emitting Materials Based on Random Systems, Department of Material Chemistry, Graduate School of Engineering, Kyoto University.
[13] 謝嘉民, 賴一凡, 林永昌, 枋志堯, “光激發螢光量測的原理、架構及應用, ”奈米通訊, 第十二卷, 第二期, 第28-39頁 (2005)
[14] http://cnx.org/content/m34656/latest/Object%2013c.jpgly
[15] Bernard Valeur, Maro Nuno Berberan-Sants, “Molecular Fluorescence: Principles and Applications” .
[16] J. Zheng, H.Yu, X.Li, S. Zhang, “Enhanced photocatalytic acticity of TiO2 nano-structured thin film with a silver hierarchical configuration,” Applied Surface Science 254 (2008) 1630.
[17] B.Yao, L. X. Guan, G. Z. Xing, Z.Z.Zhang, B. H. Li, Z. P. Wei, D. Z. Shen, “P-type conductivity and stability of nitrogen-doped zinc oxide prepared by magnetron sputtering,” Journal of Luminescence Volumes 122-123, January-April 2007, Pages 191-194.
[18] J. Lu, Y. Zhang, Z. Ye, L. Wang, B. Zhao, J. Huang, “p-type ZnO films deposited by DC reactive magnetron sputtering at different ammonia concentrations,” Materials Letters 57 (2003) 3311.
[19] X. B. Zhang, Z. L. Pei, J. Gong, C. Sun, “Investigation on the electrical properties and inhomogeneous distribution of ZnO:Al thin films prepared by dc magnetron sputtering at low deposition temperature,” J. Appl. Phys. 101, 014910 (2007)
[20] H. Cao, Y. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random Laser Action in Semiconductor Powder,” Phys. Rev. Lett. 1999, 82, 2278-2281
[21] Ni. Xu, Yong. Cui, Zhigao. Hu, Wenlei Yu, Jian. Sun, Ning Xu, and Jiada Wu, “Photoluminescence and low-threshold lasing of ZnO nanorod array,” Opt. Express, 2012 July 2, Vol. 20, No. 14, 14857-14864
[22] Ludwing Reimer, “Scanning electron microscopy: physics of image formation and microanalysis,” (1998)
[23] Anjam Khursheed, “ Scanning electron microscope optics and spectrometers,” (2011)
[24] 林聖凱。2005。以微波電漿火炬製備可見光化光觸媒之研究。中原大學化學工程系碩士論文。桃園。
[25] 陳義信。2001。冷壁式有機金屬化學氣相沈積法製備二氧化銥薄膜及其特性分析。國立台灣科技大學工程技術研究所碩士論文。台北。
[26] 趙國興, 雷射拉曼光譜對鈀、銠與硫酸鈰反應之研究。中國文化大學應用化學研究所論文, 台北 (2002)
[27] 黃惠忠。2004。奈米材料分析。滄海書局。台中。
[28] Rigaku Mechatronics Co. /Applications/Sputtering systems, 2011/07/09.
[29] Cheng SH1, Yeh Yc, Lu ML, Chen YF., “Enhance of laser action in zno nanorods assisted by surface plasmon resonance of reduced graphene oxide nanoflakes.” , Opt.Express 2012 Nov 5;20 suppl 6:A799-805
[30] R. Sapienza, P. D. Garcı´a, J. Bertolotti, M. D. Martı´n, A´ . Blanco, L. Vin˜a, C. Lo´pez, and D. S. Wiersma, “Observation of Resonant Behavior in the Energy Velocity of Diffused Light,” PRL99,233902(2007)

無法下載圖示 本全文未授權公開
QR CODE