簡易檢索 / 詳目顯示

研究生: 黃凱雋
Kai-Jyun Huang
論文名稱: 脈衝雷射沉積法製作 [Co(100) / Cu(100)]x /H-Si(100)多層膜磁性行為研究
Magnetic Behaviors of PLD Grown [Co(100) / Cu(100)]x /H–Si(100) Multilayer
指導教授: 盧志權
Lo, Chi-Kuen
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 75
中文關鍵詞: 脈衝雷射沉積法面心立方氫氣鈍化矽鈷(100)外延四重對稱
英文關鍵詞: Pulse Laser Deposition, Face Centered Cubic, Hydrogen Passivation Si(100), Hydrogen Passivation Si(100), Four fold Symmetry
DOI URL: https://doi.org/10.6345/NTNU202205337
論文種類: 學術論文
相關次數: 點閱:134下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們成功地在室溫及攝氏350度下以脈衝雷射沉積法於氫鈍化矽(100)基板上磊出高品質的鈷(100)/銅(100)多層膜,其晶格結構與磁性特性分別由X光繞射儀與磁光柯爾效應儀、鐵磁共振儀所確認及分析。

    藉由X光繞射頻譜可知,鈷能以面心立方結構穩定生長於 銅(100)/矽(100)之表面,樣品中銅、鈷兩者的繞射峰值分別位於50.34度及51.26度。其橫向磁光科爾效應圖亦顯示此批樣品有著面心立方結構所特有的磁四重對稱性,樣品之磁易軸及磁難軸分別坐落於鈷[100]、鈷[110]方向。

    本次研究亦發現,於常溫下進行鈷(100)之磊晶則須提鍍膜能量密度至 4.25焦耳每平方公分,與高溫沉積之鈷(100)相比(飽和磁場1.5千厄斯特、矯頑場25厄斯特),室溫成長之薄膜整體有著較低的飽和磁場(250厄斯特)及矯頑場(16厄斯特)。

    We have successfully used Pulse Laser Deposition (PLD) method to produce high quality Cu(100)/Co(100) multilayer on hydrogen passivated Si(100) surface at room temperature and at 350 ℃. The crystalline structure was characterized by X-Ray diffraction, while its magnetic behaviors were examined by LMOKE and FMR.

    As confirmed by X-Ray diffraction, that FCC Co(100) can be stable on Cu(100)/H-Si(100), the diffraction peak of Co(100) and Cu(100) are located at 51.26° and 〖50.34〗^°, respectively. The FCC Co exhibs four fold symmetry with as revealed by LMOKE measurement. However, the RT growth lattice has coercivity and saturation field of 16 Oe and 250 Oe, respectively, which are less than that of the high temperature growth one (coercivity and saturation are 25 Oe, and 1.5 kOe, respectively).

    Acknowledgements .......................................................................................................................... I 摘要................................................................................................................................................. II Abstract ......................................................................................................................................... III Contents ........................................................................................................................................ IV Figure ............................................................................................................................................ VI Table ............................................................................................................................................. XI Chapter 1 Introduction ............................................................................................................... 1 Chapter 2 Literature Reviews .................................................................................................... 3 2.1 Pulse Laser Deposition ....................................................................................................... 3 2.1.1 Overview of Pulse Laser Deposition Method .............................................................. 3 2.2.2 Mechanism of Pulse Laser Deposition ........................................................................ 4 2.2.3 Pros and Cons of Pulse Laser Deposition .................................................................... 8 2.2.4 Methods to Further Reduce PLD splashing ............................................................... 10 2.2 Magnetic Materials ........................................................................................................... 12 2.2.1 Magnetism ................................................................................................................. 12 2.2.2 Different Types of Magnetic Materials ..................................................................... 15 2.2.3 Characteristics of Ferromagnetic Materials ............................................................... 18 2.3 Magnetism in Microscopic Scale ...................................................................................... 20 V 2.3.1 Magneto – Crystalline Anisotropy ............................................................................. 20 2.3.2 Shape Anisotropy ....................................................................................................... 21 2.3.3 Stress Anisotropy ....................................................................................................... 25 2.5 Magneto – Optical Kerr Effect ......................................................................................... 29 Chapter 3 Instrumentations and Experiment Methods ............................................................ 37 3.1 Sample Fabrication ........................................................................................................... 37 3.2 Pulse Laser Deposition System ......................................................................................... 38 3.4 Magneto – Optical Kerr effect Measurement ................................................................... 42 3.6 X-Ray Diffraction ............................................................................................................. 44 3.6 Experimental Procedure and Parameters .......................................................................... 46 Chapter 4 Results and discussions ........................................................................................... 51 4.1 X-Ray Diffraction Data Analysis...................................................................................... 51 4.2 Magnetic Property Measurement ...................................................................................... 58 4.2.1 MOKE Data Analysis ................................................................................................ 58 Chapter 5 Conclusions ............................................................................................................. 73 Reference ...................................................................................................................................... 74

    1. Singh, R.K. and J. Narayan, Pulsed-laser evaporation technique for deposition of thin
    films: Physics and theoretical model. Physical Review B, 1990. 41(13): p. 8843-8859.
    2. Schneider, C.M., et al., Curie temperature of ultrathin films of fcc-cobalt epitaxially
    grown on atomically flat Cu(100) surfaces. Physical Review Letters, 1990. 64(9): p.
    1059-1062.
    3. Krastev, E.T., L.D. Voice, and R.G. Tobin, Surface morphology and electric
    conductivity of epitaxial Cu(100) films grown on H‐terminated Si(100). Journal of
    Applied Physics, 1996. 79(9): p. 6865-6871.
    4. de la Figuera, J., et al., Scanning-tunneling-microscopy study of the growth of cobalt
    on Cu(111). Physical Review B, 1993. 47(19): p. 13043-13046.
    5. Modak, A.R., D.J. Smith, and S.S.P. Parkin, Dependence of giant magnetoresistance
    on grain size in Co/Cu multilayers. Physical Review B, 1994. 50(6): p. 4232-4235.
    6. Shen, J., J. Giergiel, and J. Kirschner, Growth and morphology of Ni/Cu(100)
    ultrathin films: An <i>in situ</i> study using scanning tunneling microscopy.
    Physical Review B, 1995. 52(11): p. 8454-8460.
    7. Berkowitz, A.E., et al., Giant magnetoresistance in heterogeneous Cu-Co alloys.
    Physical Review Letters, 1992. 68(25): p. 3745-3748.
    8. Müller, S., et al., Structural Instability of Ferromagnetic fcc Fe Films on Cu(100).
    Physical Review Letters, 1995. 74(5): p. 765-768.
    9. Huang, F., et al., Magnetism in the few-monolayers limit: A surface magneto-optic
    Kerr-effect study of the magnetic behavior of ultrathin films of Co, Ni, and Co-Ni
    alloys on Cu(100) and Cu(111). Physical Review B, 1994. 49(6): p. 3962-3971.
    10. Duke, C.B., Semiconductor Surface Reconstruction:  The Structural Chemistry of
    Two-Dimensional Surface Compounds. Chemical Reviews, 1996. 96(4): p. 1237-
    1260.
    11. A.Stroscio, J. and W.J. Kaiser, Scanning Tunneling Microscopy. 1993. 27.
    12. Chadi, D.J., Atomic and Electronic Structures of Reconstructed Si(100) Surfaces.
    Physical Review Letters, 1979. 43(1): p. 43-47.
    13. Inoue, K., et al., Order-disorder phase transition on the Si(001) surface: Critical role
    of dimer defects. Physical Review B, 1994. 49(20): p. 14774-14777.
    14. Ramstad, A., G. Brocks, and P.J. Kelly, Theoretical study of the Si(100) surface
    reconstruction. Physical Review B, 1995. 51(20): p. 14504-14523.
    15. Giber, J., R. Drube, and V. Dose, Critical point energies in hcp and fcc cobalt from
    appearance potential spectra. Applied Physics A, 1991. 52(2): p. 167-170.
    16. Palasantzas, G., et al., Diffusion, nucleation and annealing of Co on the H-passivated
    Si(100) surface. Surface Science, 1998. 412–413(0): p. 509-517.
    17. Kief, M.T. and W.F. Egelhoff, Growth and structure of Fe and Co thin films on
    Cu(111), Cu(100), and Cu(110): A comprehensive study of metastable film growth.
    Physical Review B, 1993. 47(16): p. 10785-10814.
    18. Chrisey, D.B. and G.K. Hubler, Pulsed Laser Deposition of Thin Films. 1994.
    19. Eason, R., Pulsed Laser Deposition of Thin Films: Applications-Led Growth of
    Functional Materials. November 2006.
    20. Khaleeq-ur-Rahman, M., et al. Theoretical and experimental comparison of splashing
    in deposition of copper and graphite thin films by PLD. 2005.
    21. Yoshitake, T., G. Shiraishi, and K. Nagayama, Elimination of droplets using a vane
    velocity filter for pulsed laser ablation of FeSi2. Applied Surface Science, 2002. 197–
    198(0): p. 379-383.
    22. Coey, J.M.D., Magnetism and Magnetic Materials. April, 2010.
    23. Kittel, C., Introduction to Solid State Physics, 8th Edition. October 2004, © 2005.
    24. Cheng, D.K., Field and Wave Electromagnetics, 2nd Ed. January, 1989.
    25. Getzlaff, M., Fundamentals of Magnetism. 2008: p. 95.
    26. Cullity, B.D. and C.D. Graham, Introduction to Magnetic Materials, 2nd Edition.
    November 2008: p. 199.
    27. Stoner, E.C., Wohlfarth, E. P., A Mechanism of Magnetic Hysteresis in Heterogeneous
    Alloys. Philosophical Transactions of the Royal Society of London. Series A.
    Mathematical and Physical Sciences, May, 1948. Volume 240(Issue 826): p. pp. 599-
    642
    28. Maxwell, J.C., A Treatise on Electricity & Magnetism - Volume 2 Dover Publications
    Inc. . 1954.
    29. Barrett, C.R., J.L. Lytton, and O.D. Sherby, EFFECT OF GRAIN SIZE AND
    ANNEALING TREATMENT ON STEADY STATE CREEP OF COPPER. Trans,
    AIME,, 1967. 239(1): p. 170-186.
    30. Zhang, K., J.R. Weertman, and J.A. Eastman, The influence of time, temperature, and
    grain size on indentation creep in high-purity nanocrystalline and ultrafine grain
    copper. Applied Physics Letters, 2004. 85(22): p. 5197-5199.
    31. Orhan Yalcin, C.-K.L., Ferromagnetic Resonance - Theory and Applications. July 31,
    2013
    32. Jiang, H., et al., Epitaxial growth of Cu on Si by magnetron sputtering. Journal of
    Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1998. 16(6): p.
    3376-3383.
    33. CHAO, C.-H., Magnetic behaviors of PLD grown Py(100)/Cu(100)/H-Si(100).
    National Taiwan Normal University Master Thesis, 2013: p. 58.
    34. Getzlaff, M., Fundamentals of Magnetism. 2008: p. 118-119.
    35. Schneider, C.M., et al., Epitaxy and magnetic properties of fcc cobalt films on Cu(100).
    Vacuum, 1990. 41(1–3): p. 503-505.

    下載圖示
    QR CODE