簡易檢索 / 詳目顯示

研究生: 黃松勳
Huang, Song-Hsun
論文名稱: 陰離子空缺對於層狀多晶與單晶1T-TiSe2-d的能帶與侷域結構之影響
The impact of anion vacancy defects on band picture and local structure of layered polycrystalline and single crystal 1T-TiSe2-d
指導教授: 劉祥麟
Liu, Hsiang-Lin
周方正
Chou, Fang-Cheng
學位類別: 博士
Doctor
系所名稱: 物理學系
Department of Physics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 89
中文關鍵詞: Transition metal dichalcogenides (TMDCs)Charge density waves (CDW)Excitonic insulatorSemiconductor
英文關鍵詞: Transition metal dichalcogenides (TMDCs), Charge density waves (CDW), Excitonic insulator, Semiconductor
DOI URL: https://doi.org/10.6345/NTNU202201994
論文種類: 學術論文
相關次數: 點閱:172下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無中文摘要

    A systematic study of 1T-TiSe2 polycrystalline and single crystalline with controlled Se deficiency level indicates that a significant Se loss could be responsible for the controversial charge density wave (CDW) phase and on whether the nominal 1T-TiSe2 should be categorized as a semiconductor or a semimetal at room temperature. In the polycrystalline form, the second order CDW phase transition near ~200 K is found to be most pronounced in samples with δ ~0.12, corresponding to about one Se atom missing per eight formula units in average, which is incommensurate to the hexagonal symmetry and naturally leads to the charge ordering of 2a × 2a × 2c superlattice via exciton-phonon coupling. The anomalous resistivity ρ(T) peak between 100 and 200 K indicates not only resistivity increase due to charge ordering, but also a concomitant p- to n- carrier type change. An interpretation using band model for an extrinsic p-type semiconductor with an impurity band (IB) in proximity to the valence band (VB) is proposed to explain the evolution of Se vacancy level and electronic structure change for 1T-TiSe2-δ, from the low doping bound (δ ~0.08) of semiconducting behavior to the heavily doped (δ ~0.17) dirty semiconductor showing metallic-like n-type conduction. Supporting experimental evidences for the Se vacancy existence are provided by the integrated chemical and physical property analyses, including electron probe microanalysis (EPMA), Hall coefficient, and magnetic susceptibility. In single crystal form, the Se vacancy and Ti-intercalation are dominant near the crystal surface as explored by the scanning tunneling microscopy (STM). The Se vacancy level is found reduced on the crystal surface after prolonged annealing at high temperature, but the intercalated Ti level grows, which implies the occurrence of local re-structuring near the Se vacancy sites. Room temperature Raman scattering spectrum shows a red shift of A1g phonon mode and a blue shift of Eg phonon mode after the long time high temperature post-annealing. The high temperature post-annealing procedure has different impact on polycrystalline and single crystal samples, while samples of small grain size (~10-30 μm) have dominant Se deficiency in equilibrium, samples of large grain size (≳ 1 mm) shows significant amount of Ti-intercalation. This is most likely due to the different level of local re-structuring near the Se vacancy sites.

    Keywords: Transition metal dichalcogenides (TMDCs), Charge density wave (CDW), Excitonic insulator, Semiconductor.

    Contents Acknowledgements i Abstract ii Contents iv List of Figures vi List of Tables xi Chapter 1 Introduction 1 Chapter 2 Brief review of transition metal dichalcogenides 6 2.1 Transition metal dichalcogenides (TMDCs) 6 2.2 Principles of the CDW: the Peierls transition 9 2.3 CDW and other collective phenomena in the TMDC family 11 2.4 CDW state in 1T-TiSe2 16 2.4.1 Crystal structure 16 2.4.2 Transport properties 20 2.4.3 Excitonic condensate and Jahn-Teller effect 21 2.4.4 The intrinsic behavior of 1T-TiSe2 without Se vacancy defects 22 Chapter 3 Sample preparation and experimental methods 24 3.1 Polycrystalline sample synthesis and single crystal growth 24 3.2 Powder X-ray diffraction 26 3.3 Rietveld refinement method 30 3.4 Electron probe micro-analyzer (EPMA) 32 3.5 Magnetic property measurement system (MPMS) 34 3.6 Physical Property Measurement system (PPMS) 35 3.7 Scanning Tunneling Microscopy (STM) 38 3.8 Raman scattering spectroscopy 41 Chapter 4 Tunable Se vacancy defects and the unconventional charge density wave in 1T-TiSe2−δ 44 4.1 Experimental details 44 4.2 Synthesis and defects 45 4.3 Crystal structure and defects 48 4.4 Transport properties 51 4.5 Semiconductor or semimetal 54 4.6 Band picture description 55 4.7 Raman scattering study 58 4.8 Summary 60 Chapter 5 STM study of single crystal 1T-TiSe2 surface after the post-annealing 61 5.1 Experimental details 62 5.2 Structure and transport property 62 5.3 STM images on the crystal surface 67 5.4 Raman scattering study 74 Chapter 6 Summary and proposed further works 79 References 81 List of Figures Fig. 2.1: The basic forms of layered compounds for TMDCs. Fig. 2.2: The different stacking types of MX2 for M = group V and VI. Fig. 2.3: The polytypic transformation in TaSe2 system via different temperature heating process. Fig. 2.4: Peierls transition in a one-dimensional chain. The atomic arrangement and the corresponding electronic band structure (a) before and (b) after the transition. Fig. 2.5: Fermi surface nesting in 1D, 2D, and 3D electron gas. Fig. 2.6: The synchrotron X-ray transmission Laue pattern for 1T-TaSe2 crystal which exhibits a commensurate CDW √13 × √13 superlattice at room temperature. Fig. 2.7: The temperature dependence of resistivity in 1T- TaS2. A metallic state is above 550 K; an incommensurate CDW (ICCDW) phase is above 350 K; an near commensurate CDW (NCCDW) phase is from 190 to 350 K; a commensurate CDW (CCDW) phase is below 190 K. Fig. 2.8: The temperature–pressure phase diagram of 1T-TaS2. Fig. 2.9: The electronic phase diagram for CuxTaS2. Cu is proposed being intercalated into the vdW gap of the TaS2 planes. Fig. 2.10:The crystal structure of 1T-TiSe2. Fig. 2.11: In-plane electrical resistivity perpendicular for crystals of 1T-TiSe2 grown by iodine vapor transport at different growth temperatures (Tg). Fig. 2.12: (a) Lattice parameters of CuxTiSe2. (b) The CuxTiSe2 T–x electronic phase diagram. Fig. 2.13: The phase diagram of 1T-CuxTiSe2, where the horizontal axes stand for pressure and the content x of the intercalated Cu. Fig. 2.14: Pressure–temperature phase diagram of TiSe2. Fig. 2.15: The densities of states for octahedral and trigonal prismatic layered materials that the ‘d_(z^2 )’ band is slightly lower for trigonal prismatic than for octahedral coordination in TiSe6. Fig. 2.16: There are two kinds of Ti environments for TiSe6 octahedron: (a) top and bottom face of Se atoms rotate around Ti, and (b) Ti moves closer to Se-Se edge of the octahedron. Fig. 3.1: The single crystal growth of 1T-TiSe2 by the CVT method using iodine as the transport agent. The temperature gradient is TH = 650 ℃ and TL = 550 ℃ in 35 cm. Fig. 3.2: The as-grown 1T-TiSe2 single crystal deposited at the 550 ℃ cold zone by the CVT method. Fig. 3.3: A sketch of X-ray diffractometer. Fig. 3.4: The Bruker D2 PHASER X-ray diffractometer. Fig. 3.5 The Bruker D8 ADVANCE X-ray diffractometer. Fig. 3.6: A sketch of synchrotron radiation and the beamline distribution in NSRRC, Taiwan. The powder X-ray diffraction is operated at BL01C beamline. The photon energy of 20 keV (~0.61993 Å) incident beam passing through the sample and scattered to a detector Mar345 to form a diffraction pattern. Fig. 3.7: The XRD pattern for 1T-TiSe2 polycrystalline which obtained by synchrotron X-ray. Fig. 3.8: (a) A 2D diffraction patterns forming a reciprocal lattice. (b) The random orientation powder scattering rays forming bright cycles. Fig. 3.9: Different types of interaction: (1) ionization and (2) generation of Bremsstrahlung. Fig. 3.10: QD-SQUID VSM instrument with the helium cryo-cycle compressor in the Center for Condensed Matter Sciences (CCMS), National Taiwan University. Fig. 3.11: The QD-PPMS instrument with the helium cryo-cycle compressor in the Center for Condensed Matter Sciences (CCMS), National Taiwan University. Fig. 3.12: A sketch of four probe method for resistivity measurement. Fig. 3.13: A sketch of Hall effect measurement. Fig. 3.14: A Schematic diagram of STM. Fig. 3.15: Schematic representation of operation of a scanning tunneling microscope in (a) constant current mode and (b) constant height mode. Fig. 3.16: A sketch of the setup of the micro-Raman scattering. Fig. 4.1: X-ray diffraction (XRD) patterns for 1T-TiSe2-δ which were obtained by using synchrotron radiation with wave length λ = 0.61993 Å and indexed with space group P3 ̅m1 (No.164). Fig. 4.2: The Se vapor condensed on the sealed quartz tube inner wall after post-annealing. Fig. 4.3: An Arrhenius plot of Se deficiency level δ vs. inverse annealing temperature for 1T-TiSe2-δ powder samples. Fig. 4.4: The magnetic susceptibility for different Se deficiency level of 1T-TiSe2-δ. The CDW transition temperature is shown in inset of figure and predicted by red dash arrow. Fig. 4.5: The Se deficiency level δ dependence of the lattice constant a and c in 1T-TiSe2-δ. Fig. 4.6: The Se deficiency level δ dependence of the bond length and bond angle in 1T-TiSe2-δ. Fig. 4.7: The coordination number (CN) from TiSe6 of CN = 6 to TiSe5 of CN = 5 due to the Se vacancy. Fig. 4.8: The temperature dependence of resistivity for 1T-TiSe2-δ. Fig. 4.9: The temperature dependence of Seebeck coefficient for 1T-TiSe2-δ. Fig. 4.10: The temperature dependence of Hall coefficient for 1T-TiSe2-δ where δ = 0.14. Fig. 4.11: Band pictures of 1T-TiSe2-δ. Fig. 4.12: Temperature dependence of electrical resistivity which has a semiconducting background subtraction for 1T-TiSe2-δ, δ = 0.12. Fig. 4.13: The room temperature Raman scattering spectra for 1T-TiSe2-δ polycrystalline (powder pellets with polished surface). The laser power is 2 mW. Fig. 4.14: The room temperature Raman scattering spectra for (a) no grinded and (b) grinded of 1T-TiSe2-δ polycrystalline. The laser power is 0.2 mW. Fig. 4.15: The room temperature Raman spectra for 1T-TiSe2-δ polycrystalline (no grinding powder), δ = 0.17. The laser powers are 0.2 mW for black line and 2 mW for red line. Fig. 5.1: The synchrotron X-ray diffraction for different annealing temperature of 1T-TiSe2 crystals which are grinded to powders. Fig. 5.2: The lattice constants of 1T-TiSe2 crystals as function of annealing temperature. Fig. 5.3: The Se deficiency level of 1T-TiSe2 polycrystalline and crystals with different annealing temperature which obtained by EPMA. Fig. 5.4: The temperature dependence of resistivity for the ab-plane of 1T-TiSe2 single crystals which annealing at different temperature. Fig. 5.5: The temperature dependence of magnetic susceptibility for the ab-plane and c-direction of 1T-TiSe2 single crystals which annealing at different temperature. Fig. 5.6: STM image of 1T-TiSe2 by 550 ℃ post-annealing. 20 × 20 nm2, V = 0.15 V, I = 0.8 nA at 77 K. Fig. 5.7: STM image of 1T-TiSe2 by 750 ℃ post-annealing. 20 × 20 nm2, V = 0.15 V, I = 0.8 nA at 77 K. Fig. 5.8: STM image of 1T-TiSe2 by 950 ℃ post-annealing. 15 × 15 nm2, V = 0.6 V, I = 0.8 nA at 77 K. Fig. 5.9: Bias dependence of STM images for 1T-TiSe2 after 950 ℃ post-annealing. Sample bias V = (a) -0.1, (b) -0.2, (c) -0,3, (d) -0.4, (e) -0,5, (f) -0.6, (g) -0.7, (h) -0.8, and (i) -0.9 V (filled State), I = 0.8 nA, 15 x 15 nm2 at 77 K. Fig. 5.10: Bias dependence of STM images for 1T-TiSe2 after 950 ℃ post-annealing. Sample bias V = (a) 0.1, (b) 0.2, (c) 0,3, (d) 0.4, (e) 0,5, (f) 0.6, (g) 0.7, (h) 0.8, and (i)-0.9 V (empty State), I = 0.8 nA, 15 x 15 nm2 at 77 K. Fig. 5.11: Number density of Se vacancy in 1T-TiSe2 crystals for different annealing temperature. Fig. 5.12: Number density of Ti-intercalation in 1T-TiSe2 crystals for different post-annealing temperature. Fig. 5.13: The defect distributions (Ti-intercalation) on 750 ℃ post-annealing 1T-TiSe2 surface. 30 × 30 nm2, V = -0.5 V, I = 0.8 nA at 77 K. Fig. 5.14: Displacement vectors for the infrared- and Raman-active modes in the 2H and 1T polytypes. Fig. 5.15: Room temperature Raman scattering spectra of 1T-TiSe2 crystals for different post-annealing temperature excited by 532 nm laser line. Fig. 5.16: (a) The red shit of A1g and (b) the blue shift of Eg Raman phonon modes. Fig. 5.17: The Ti atom was introduced into the van der Waals gap and bonded with top and bottom layer of TiSe2. List of Tables Table 1.1: Single crystal growth of 1T-TiSe2 in the literature, including growth temperature, transport agent used in CVT, and physical property measurements. Table 2.1: The common groups of transition metals for TMDCs, MX2, X = S, or Se, or Te. Table 2.2: The CDW and superconductivity transition temperature of TMDCs. Table 4.1: The lattice parameters, selected bond length and angle, and goodness of fit for 1T-TiSe2-δ polycrystalline varied with different Se deficiency level δ. Table 4.2: Carrier concentrations and mobilities derived from resistivity and Hall effect measurement results for δ ∼0.14. Table 4.3: The activation energy Ea and CDW onset of 1T-TiSe2−δ. Table 5.1: The lattice parameters, selected bond length and angle, and goodness of fit for 1T-TiSe2 single crystals varied with different annealing temperature. Table 5.2: The atomic ratio for different annealing temperature of 1T-TiSe2 polycrystalline and crystals by EPMA. Table 5.3: Symmetries and selection rules for the long-wavelength acoustic and optic phonons in the 1T and 2H polytype geometries.

    References
    [1] J. A. Wilson and A.D. Yoffe, “The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties”, Advances in Physics 18, 193 (1969).
    [2] F. J. Di Salvo, D. E. Moncton, and J. V. Waszczak, “Electronic properties and superlattice formation in the semimetal TiSe2”, Phys. Rev. B 14, 4321 (1976).
    [3] J. A. Wilson and S. Mahajan, “The anamalous behaviour of TiSe2 and the excitonic insulator mechanism”, Commun. Physics 2, 23 (1977).
    [4] K. C. Woo, F. C. Brown, W. L. McMillan, R. J. Miller, M. J. Schaffman, and M. P. Sears, “Superlattice formation in titanium diselenide”, Phys. Rev. B 14, 3242 (1976).
    [5] J. A. Wilson, “Modeling the contasting semimetallic characters of TiS2 and TiSe2”, Phys. Status Solidi B 86, 11 (1978).
    [6] O. Anderson, G. Karschnick, R. Manzke, and M. Skibowski, “The phase transition in the electronic structure of 1T-TiSe2”, Solid State Commun. 53, 339 (1985).
    [7] Z. Zhu, Y. Cheng, and U. Schwingenschlögl, “Origin of the charge density wave in 1T-TiSe2”, Phys. Rev. B 85, 245133 (2012).
    [8] J. van Wezel, P. Nahai-Williamson, and S. S. Saxena, “Exciton-phonon-driven charge density wave in TiSe2”, Phys. Rev. B 81, 165109 (2010).
    [9] C. Monney, C. Battaglia, H. Cercellier, P. Aebi, and H. Beck, “Exciton condensation driving the periodic lattice distortion of 1T-TiSe2”, Phys. Rev. Lett. 106, 106404 (2011).
    [10] H. P. Hughes, “Structural distortion in TiSe2 and related materials-a possible Jahn-Teller effect?”, J. Phys. C: Solid State Phys. 10, L319 (1977).
    [11] K. Rossnagel, L. Kipp, and M. Skibowski, “Charge-density-wave phase transition in 1T-TiSe2: Excitonic insulator versus band-type Jahn-Teller mechanism”, Phys. Rev. B 65, 235101 (2002¬).
    [12] M. H. Whangbo and E. Canadell, “Analogies between the concepts of molecular chemistry and solid-state physics concerning structural instabilities. Electronic origin of the structural modulations in layered transition-metal dichalcogenides”, J. Am. Chem. Soc. 114, 9587 (1992).
    [13] T. E. Kidd, T. Miller, M.Y. Chou, and T. C. Chiang, “Electron-hole coupling and the charge density wave transition in TiSe2”, Phys. Rev. Lett. 88, 226402 (2002).
    [14] D. Jérome, T. M. Rice, and W. Kohn, “Excitonic insulator”, Phys. Rev. 158, 462 (1967).
    [15] H. Cercellier, C. Monney, F. Clerc, C. Battaglia, L. Despont, M. G. Garnier, H. Beck, and P. Aebi, “Evidence for an excitonic insulator phase in 1T-TiSe2”, Phys. Rev. Lett. 99, 146403 (2007).
    [16] C. Monney, H. Cercellier, F. Clerc, C. Battaglia, E. F. Schwier, C. Didiot, M. G. Garnier, H. Beck, P. Aebi, H. Berger, L. Forró , and L. Patthey, “Spontaneous exciton condensation in 1T-TiSe2: BCS-like approach”, Phys. Rev. B 79, 045116 (2009).
    [17] D. L. Greenaway and R. Nitsche, “Preparation and optical properties of group IV-VI chalcogenides having the CdI2 structure”, J. Phys. Chem. Solids 26, 1445 (1965).
    [18] Julia C. E. Rasch, Torsten Stemmler, Beate Müller, Lenart Dudy, and Recardo Manzke, “1T-TiSe2: Semimetal or semiconductor?”, Phys. Rev. Lett. 101, 237602 (2008).
    [19] Matthias M. May, Christine Brabetz, Christoph Janowitz, and Recardo Manzke, “Charge-Density-Wave phase of 1T-TiSe2: The influence of conduction band population”, Phys. Rev. Lett. 107, 176405 (2011).
    [20] Matthias M. May, Christine Brabetz, Christoph Janowitz, Recardo Manzke, “The influence of different growth conditions on the charge density wave transition of 1T-TiSe2”, Journal of Electron Spectroscopy and Related Phenomena 184, 180 (2011).
    [21] Matthias M. May, Christoph Janowitz, and R. Manzke, “Realignment of the charge-density wave in TiSe2 by variation of the conduction band population”, arXiv: 1208.4761v3 [cond-mat.str-el], submitted to Phys. Rev. Lett. (2016).
    [22] F. J. Di Salvo and J. V. Waszczak, “Transport properties anti the phase transition in Ti1-xMxSe2 (M = Ta or V)”, Phys. Rev. B 17, 3801 (1978).
    [23] A. Zunger and A. J. Freeman, “Band structure and lattice instability of TiSe2”, Phys. Rev. B 17, 1839 (1978).
    [24] O. Anderson, R. Manzke, and M. Skibowski, “Three-dimensional and relativistic effects in layered 1 T-TiSe2”, Phys. Rev. Lett. 55, 2188 (1985).
    [25] T. Pillo, J. Hayoz, H. Berger, F. Levy, L. Schlapbach, and P. Aebi, “Photoemission of bands above the Fermi level: The excitonic insulator phase transition in 1T-TiSe2”, Phys. Rev. B 61, 16213 (2000).
    [26] G. Li, W. Z. Hu, D. Qian, D. Hsieh, M. Z. Hasan, E. Morosan, R. J. Cava, and N. L. Wang, “Semimetal-to-semimetal charge density wave transition in 1T-TiSe2”, Phys. Rev. Lett. 99, 027404 (2007).
    [27] J. Ishioka, Y. H. Liu, K. Shimatake, T. Kurosawa, K. Ichimura, Y. Toda, M. Oda, and S. Tanda, “Chiral charge-density waves”, Phys. Rev. Lett. 105, 176401 (2010).
    [28] E. Morosan, H. W. Zandbergen, B. S. Dennis, J. W. G. Bos, Y. Onose, T. Klimczuk, A. P. Ramirez, N. P. Ong, and R. J. Cava, “Superconductivity in CuxTiSe2”, Nature Phys. 2, 544 (2006).
    [29] E. Morosan, K. E. Wagner, Liang L. Zhao, Y. Hor, A. J. Williams, J. Tao, Y. Zhu, and R. J. Cava, “Multiple electronic transitions and superconductivity in PdxTiSe2”, Phys. Rev. B 81, 094524 (2010).
    [30] A. F. Kusmartseva, B. Sipos, H. Berger, L. Forró, and E. Tutiš, “Pressure induced superconductivity in pristine 1T-TiSe2”, Phys. Rev. Lett. 103, 236401 (2009).
    [31] Y. I. Joe, X. M. Chen, P. Ghaemi, K. D. Finkelstein, G. A. de la Peña, Y. Gan, J. C. T. Lee, S. Yuan, J. Geck, G. J. MacDougall, T. C. Chiang, S. L. Cooper, E. Fradkin and P. Abbamonte, “Emergence of charge density wave domain walls above the superconducting dome in 1T-TiSe2”, Nature Phys. 10, 421 (2014).
    [32] I. Taguchi, M. Asai, Y. Watanabe, and M. Oka, “Transport properties of iodine-free TiSe2”, Physica B+C 105, 146 (1981).
    [33] F. Levy, “Electrical resistivity and Hall effect in TiSe2 containing vanadium impurities”, J. Phys. C: Solid State Phys. 12, 3725 (1979).
    [34] N. Ogasawara, K. Nakamura and S. Tanaka, “The pressure effect on the CDW-transition and the transport properties of TiSe2”, Solid State Communication 31, 873 (1979).
    [35] H. P. B. Rimmington, A. A. Balchin, and B. K. Tanner, “Nearly perfect single crystals of layer compounds grown by iodine vapour-transport techniques”, Journal of Crystal Growth 15, 51 (1972).
    [36] R. A. Craven, F. J. Di Salvo and F. S. L. Hsu, “Mechanisms for the 200 K transition in TiSe2: A measurement of the specific heat”, Solid State Communications 25, 39 (1978).
    [37] M. Wiesenmayer, S. Hilgenfeldt, S. Mathias, F. Steeb, T. Rohwer, and M. Bauer, “Spectroscopy and population decay of a van der Waals gap state in layered TiSe2”, Phys. Rev. B 82, 035422 (2010).
    [38] R. Peierls, “Zur Theorie der elektirschen und thermischen Leitf¨ahigkeit von Metallen”, Annalen der Physik, 4 (2), 121 (1930).
    [39] C. Monney’s thesis, “Exciton condensation in 1T-TiSe2: A photoemission study and its theoretical model” (2009).
    [40] http://www.pi1.uni-stuttgart.de/forschung/organic/ladungsdichtewellen.en.html
    [41] J. A. Wilson, F. J. Di Salvo, and J. Mahajan, “Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides”, Adv. Phys. 24, 117 (1975).
    [42] Y. Aiura, H. Bando, R. Kitagawa, S. Maruyama, Y. Nishihara, K. Horiba, M. Oshima, O. Shiino, and M. Nakatake, “Electronic structure of layered 1T−TaSe2 in commensurate charge-density-wave phase studied by angle-resolved photoemission spectroscopy”, Phys. Rev. B 68, 073408 (2003).
    [43] P. Fazekas and E. Tosatti, “Charge carrier localization in pure and doped 1T-TaS2”, Physica B+C 99, 183 (1980).
    [44] F. Clerc, M. Bovet, H. Berger, L. Despont, C. Koitzsch, M. G. Garnier, and P. Aebi, “Charge density waves in 1T-TaS2: an angle-resolved photoemission study”, Physica B 351, 245 (2004).
    [45] F. Clerc, C. Battaglia, M. Bovet, L. Despont, C. Monney, H. Cercellier, M. G. Garnier, and P. Aebi, “Lattice-distortion-enhanced electron-phonon coupling and Fermi surface nesting in 1T-TaS2”, Phys. Rev. B 74, 155114 (2006).
    [46] B. Sipos, A. F. Kusmartseva, A. Akrap, H. Berger, L. Forró, and E. Tuti, “From Mott state to superconductivity in 1T-TaS2”, Nature Materials 7, 960 (2008).
    [47] S. V. Borisenko, A. A. Kordyuk, A. N. Yaresko, V. B. Zabolotnyy, D. S. Inosov, R. Schuster, B. Büchner, R. Weber, R. Follath, L. Patthey, and H. Berger, “Pseudogap and charge density waves in two dimensions”, Phys. Rev. Lett. 100, 196402 (2008).
    [48] M. H. van Maaren and H. B. Harland, “An energy band model of Nb- and Ta- dichalcogenides superconductors”, Phys. Lett. 29A, 571 (1969).
    [49] S. Nagata, T. Aochi, T. Abe, S. Ebisu, T. Hagino, Y. Seki, and K. Tsutsumi, “Superconductivity in the layered compound 2H-TaS2”, J. Phys. Chem. Solids 53, 1259 (1992).
    [50] K. E. Wagner, E. Morosan, Y. S. Hor, J. Tao, Y. Zhu, T. Sanders, T. M. McQueen, H. W. Zandbergen, A. J. Williams, D. V. West, and R. J. Cava, “Tuning the charge density wave and superconductivity in CuxTaS2”, Phys. Rev. B 78, 104520 (2008).
    [51] Y. Hamaue and R. Aoki, “Effects of organic intercalation on lattice vibrations and superconducting properties of 2H–NbS2”, J. Phys. Soc. Jpn. 55, 1327 (1986).
    [52] M. H. van Maaren and G. M. Schaeffer, “Superconductivity in group Va dichalcogenides”, Phys. Lett. 20, 131 (1966).
    [53] D. E. Moncton, J. D. Axe, and F. J. DiSalvo, “Neutron scattering study of the charge-density wave transitions in 2H−TaSe2 and 2H−NbSe2”, Phys. Rev. B 16, 801 (1977).
    [54] M. Holt, P. Zschack, Hawoong Hong, M. Y. Chou, and T.-C. Chiang, “X-ray studies of phonon softening in TiSe2”, Phys. Rev. Lett. 86, 3799 (2001).
    [55] A. N. Titov and A. V. Dolgoshein. “Phase diagrams of intercalation materials with polaron-type carrier localization”, Phys. Solid State 42, 434 (2000).
    [56] N. V. Baranov, K. Inoue, V. I. Maksimov, A. S. Ovchinnikov, V. G. Pleschov, A. Podlesnyak, A. N. Titov, and N. V. Toporova, “Ni intercalation of titanium diselenide: effect on the lattice, specific heat and magnetic properties”, J. Phys. Condens. Matter 16, 9243 (2004).
    [57] X. Y. Cui, H. Negishi, S. G. Titova, K. Shimada, A. Ohnishi, M. Higashiguchi, Y. Miura, S. Hino, A. M. Jahir, A. Titov, H. Bidadi, S. Negishi, H. Namatame, M. Taniguchi, and M. Sasaki, “Direct evidence of band modification and suppression of superstructure in TiSe2 upon Fe intercalation: An angle-resolved photoemission study.”, Phys. Rev. B 73, 085111 (2006).
    [58] N. V. Baranov, V. I. Maksimov, J. Mesot, V. G. Pleschov, A. Podlesnyak, V. Pomjakushin, and N. V. Selezneva, “Possible reappearance of the charge density wave transition in MxTiSe2 compounds intercalated with 3d metals”, J. Phys.: Condens. Matter 19, 016005 (2007).
    [59] N. V. Baranov, A. N. Titov, V. I. Maksimov, N. V. Toporova, A. Daoud-Aladine, and A. Podlesnyak, “Antiferromagnetism in the ordered subsystem of Cr ions intercalated into titanium diselenide”, J. Phys.: Condens. Matter 17 (34), 5255 (2005).
    [60] V. G. Pleshchev, N. V. Selezneva, V. I. Maksimov, A. V. Korolev, A. V. Podlesnyak, and N. V. Baranov, “Specific features of the structure, magnetic properties, and heat capacity of intercalated compounds CrxTiSe2”, Phys. Solid State 51 (5) , 933 (2009).
    [61] V. G. Pleshchev, A. N. Titov, and A. V. Kuranov, “Electrical and magnetic properties of titanium diselenide intercalated with cobalt”, Phys. Solid State 39 (9), 1442 (1997).
    [62] S. E. Stoltz, H. I. Starnberg, and L. J. Holleboom, “Rb deposition on TiSe2 and TiTe2 at 100 K and at room temperature studied by photoelectron spectroscopy”, Phys. Rev. B 71, 125403 (2005).
    [63] M. M. Traum, G. Margaritondo, N. V. Smith, J. E. Rowe, and F. J. Di Salvo, “TiSe2: semiconductor, semimetal, or excitonic insulator”, Phys. Rev. B 17, 1836 (1978).
    [64] N. G. Stoffel, S. D. Kevan, and N. V. Smith, “Experimental band structure of 1T-TiSe2 in the normal and charge-density-wave phases”, Phys. Rev. B 31, 8049 (1985).
    [65] G. A. Benesch, A. M. Woolley, and C. Umrigar, “The pressure dependences of TiS2 and TiSe2 band structures”, J. Phys. C 18, 1595 (1985).
    [66] C. M. Fang, R. A. de Groot, and C. Haas, “Bulk and surface electronic structure of 1T−TiS2 and 1T−TiSe2”, Phys. Rev. B 56, 4455 (1997).
    [67] W. Kohn, “Excitonic phases”, Phys. Rev. Lett. 19, 439 (1967).
    [68] B. I. Halperin and T. M. Rice, “Possible anomalies at a semimetal-semiconductor transistion”, Rev. Mod. Phys. 40, 755 (1968).
    [69] http://www.nsrrc.org.tw/rdss/rdshow_1.html
    [70] https://www.nsrrc.org.tw/english/lightsource.aspx
    [71] A. C. Larson and R. B. Von Dreele, “Generalized structure analysis system”, Los Alamos National Laboratory, Los Alamos, NM, 1994.
    [72] https:// www.ncnr.nist.gov/programs/crystallography/software/downloads.html
    [73] B. H. Toby, “EXPGUI, a graphical user interface for GSAS”, J. Appl. Cryst. 34, 210-213 (2001).
    [74] http://www.ruhr-uni-bochum.de/epma/methode/index.html.en
    [75] http://www.sardarsinghsir.com/MSc/MSc%20-pdf%20files/Four-Probe-ethod.pdf
    [76] http://courses.washington.edu/phys431/hall_effect/hall_effect.pdf
    [77] G. Binning and H. Rohrer, “Scanning tunneling microscopy”, Helvetica Physica Acta 55, 726 (1982).
    [78] S. Woedtke, Ph.D. thesis, Inst. f. Exp. u. Ang. Phys. der CAU Kiel, (2002).
    [79] http://www.ieap.uni-kiel.de/surface/ag-kipp/stm/stm.htm
    [80] K. Oura, V. G. Lifshits, A. A. Saranin, A. V. Zotov, and M. Katayama, “Surface science: An introduction”, Springer, 452 (2010).
    [81] http://eng.thesaurus.rusnano.com/wiki/article14154
    [82] C. V. Raman, “A new radiation”, Ind. J. Phys. 2, 387 (1928).
    [83] A. Smekal, “Zur Quantentheorie der Dispersion”, Naturwiss. 11, 873 (1923).
    [84] J. R. Ferraro, K. Nakamoto, and C. W. Brown, “Introductory raman spectroscopy”, Elsveier, (2003).
    [85] D. A. Long, “Raman spectroscopy”, McGraw-Hill, (1977).
    [86] F. A. Kroger and H. J. Vink, “Relations between the concentrations of imperfections in solids”, J. Phys. Chem. Solids 5, 208 (1958).
    [87] L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V. P. Dravid, and M. G. Kanatzidis, “The intrinsic thermal conductivity of SnSe”, Nature 539, 7627 (2016).
    [88] F.-T. Huang, M.-W. Chu, H. H. Kung, W. L. Lee, R. Sankar, S.-C. Liou, K. K. Wu, Y. K. Kuo, and F. C. Chou, “Nonstoichiometric doping and Bi antisite defect in single crystal Bi2Se3”, Phys. Rev. B 86, 081104(R) (2012).
    [89] B. Hildebrand, C. Didiot, A. M. Novello, G. Monney, A. Scarfato, A. Ubaldini, H. Berger, D. R. Bowler, C. Renner, and P. Aebi, “Doping nature of native defects in 1T-TiSe2”, Phys. Rev. Lett. 112, 197001 (2014).
    [90] M. V. Kuznetsov, I. I. Ogorodnikov, A. S. Vorokh, A. S. Rasinkin, and A. N. Titov, “Characterization of 1T-TiSe¬2 surface by means of STM and XPD experiments and model calculations”, Surf. Sci. 606, 1760 (2012).
    [91] B. Hildebrand, T. Jaouen, C. Didiot, E. Razzoli, G. Monney, M.-L. Mottas, A. Ubaldini, H. Berger, C. Barreteau, H. Beck, D. R. Bowler, and P. Aebi, “Short-range phase coherence and origin of the 1T-TiSe2 charge density wave”, Phys. Rev. B 93, 125140 (2016).
    [92] W. Zhong, G. Overney, and D. Tomanek, “Structural properties of Fe crystals”, Phys. Rev. B 48, 6740 (1993).
    [93] R. Z. Bachrach and M. Skibowski, “Angle-eesolved photoemission from TiSe2 using synchrotron radiation”, Phys. Rev. Lett. 37, 40 (1976).
    [94] C. Kittel, “Introduction to solid state physics”, Wiley, New York, (1996).
    [95] J. Von Boehm and H. M. Isomaki, “Relativistic p-d gaps of 1T-TiSe2, TiS2, ZrSe2 and ZrS2”, J. Phys. C 15, L733 (1982).
    [96] H. Isomaki and J. Von Boehm, “The gaps of the ideal TiS2 and TiSe2”, J. Phys. C 14, L75 (1981).
    [97] F. A. Kroger and H. J. Vink, “Relations between the concentrations of Imperfections in crystalline solids”, Solid State Phys. 3, 307 (1956).
    [98] X. Blase, E. Bustarret, C. Chapelier, T. Klein, and C. Marcenat, “Superconducting group-IV semiconductors”, Nat. Mater. 8, 375 (2009).
    [99] P. Chen, Y.-H. Chan, X.-Y. Fang, Y. Zhang, M. Y. Chou, S.-K. Mo, Z. Hussain, A.-V. Fedorov, and T.-C. Chiang, “Charge density wave transition in single-layer titanium diselenide”, Nat. Commun. 6, 8943 (2015).
    [100] J. A. Wilson, “Concerning the semimetallic characters of TiS2 and TiSe2”, Solid State Commun. 22, 551 (1977).
    [101] J. van Wezel, P. Nahai-Williamson, and S. S. Saxena, An alternative interpretation of recent ARPES measurements on TiSe2”, Europhys. Lett. 89, 47004 (2010).
    [102] J. van Wezel, P. Nahai-Williamson, and S. S. Saxena, “Quasi one-dimensional chains and exciton–phonon interactions in TiSe2”, Phys. Status Solidi B 247, 592 (2010).
    [103] David B. Lioi, David J. Gosztola, Gary P. Wiederrecht, and Goran Karapetrov, “Photon-induced selenium migration in TiSe2”, Appl. Phys. Lett. 110, 081901 (2017).
    [104] A. H. Thompson, F. R. Gamble and C. R. Symon, “The verification of the existence of TiS2”, Mat. Res. Bull. 10, 915 (1975).
    [105] P. M. Koenraad and M. E. Flatté, “Single dopants in semiconductors”, Nat. Mater. 10, 91 (2011).
    [106] S. H. Huang, G. J. Shu, Woei Wu Pai, H. L. Liu, and F. C. Chou, “Tunable Se vacancy defects and the unconventional charge density wave in 1T−TiSe2−δ”, Phys. Rev. B 95, 045310 (2017).
    [107] G. Lucovsky, R. M. White, J. A. Benda, and J. F. Revelli, “Infrared-reflectance spectra of layered group-IV and group-VI transition-metal dichalcogenides”, Phys. Rev. B 7, 3859 (1973).
    [108] J. A. Holy, K. C. Woo, M. V. Klein, and F. C. Brown, “Raman and infrared studies of superlattice formation in TiSe2”, Phys. Rev. B 16, 3628 (1977).
    [109] J. Wang, H. Zheng, G. Xu, L. Sun, D. Hu, Z. Lu, L. Liu, J. Zheng, C. Tao, and L. Jiao, “Controlled synthesis of two-dimensional 1T-TiSe2 with charge density wave transition by chemical vapor transport”, J. Am. Chem. Soc. 138, 16216 (2016).

    下載圖示
    QR CODE