研究生: |
吳怡嫺 |
---|---|
論文名稱: |
跨年級學生氣體心智模式演變歷程之探究與分析 A Cross-age Investigation of Students’ Conceptions and Mental Models of the Particulate Model of Gas |
指導教授: | 邱美虹 |
學位類別: |
碩士 Master |
系所名稱: |
科學教育研究所 Graduate Institute of Science Education |
論文出版年: | 2007 |
畢業學年度: | 95 |
語文別: | 中文 |
論文頁數: | 199 |
中文關鍵詞: | 理想氣體模型 、概念演化 |
英文關鍵詞: | Particulate Model of Gas, conceptual evolution |
論文種類: | 學術論文 |
相關次數: | 點閱:147 下載:55 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究為一跨年齡學生氣體微觀模型相關概念之研究,調查了小學六年級(82人)、國中二年級(90人)、國中三年級(101人)、高中二年級自然組(82人)、高中三年級自然組(85人)、與大學化學系高年級(53人)等共492位學生對於氣體微觀本質以及理想氣體模型的想法,並推測其心智模式。
氣體本質心智模式包括四個組成概念,分別為:氣體組成本質為連續或粒子、氣體成份如何分佈、氣體成分間是否為真空、以及氣體成分運動方式。研究結果發現以小六學生中約有50%持有連續觀,且想法最多樣化;國二學生則約有50%認為氣體運動有特定方向;國三以後仍固著的迷思概念為「粒子間非真空」,約50%學生持有,且此迷思概念持續到化學系高年級仍佔約30%,屬於最難改變之迷思概念。學生們持有的氣體本質心智模式共34種,演變歷程中同樣以小六學生出現之種類最多,隨著年級上升逐漸轉變為完整科學模式以及僅有「粒子間非真空」一迷思概念之「類科學模式」。
理想氣體模型心智模式包括七個組成概念,研究結果顯示,包括「氣體體積改變時,壓力的變化」、「氣體粒子數量改變時,氣體壓力的變化」與「溫度上升時壓力(與體積)會上升,反之則下降」等三項巨觀概念在小學六年級就已有多數學生選擇正確的概念。微觀概念包括:「密閉容器內氣體壓力的成因」、「粒子運動速率與溫度之關係」「粒子本身體積與溫度之關係」、與「同樣數量的不同種類氣體壓力(或體積)的異同之微觀機制」四項。其中第二項在國三之後便有將近60%的學生擁有正確概念,第一項與第四項則到高二之後才有多數學生正確,且迷思概念種類多於其他組成概念,第三項概念於化學系高年級仍僅60%學生這麼認為,換言之「粒子本身體積會熱漲冷縮」是最為固著之迷思概念。理想氣體模型心智模式共52種,演變歷程中小六至高二種類均相當多,且上述四個年齡層的學生心智模式不一致比例均不低。大部分出現模式中均持有正確的巨觀概念,主要差異在於各微觀概念的變異。正確性則至高二後才有明顯進步,完整科學模式亦至高二才出現。至化學系高年級仍有多種「類科學模式」,其迷思概念為「粒子本身體積會熱漲冷縮」以及「同樣數量的不同種類氣體壓力(或體積)的異同之微觀機制」兩項。
以上分析顯示在教學方面,學校課程是從巨觀現象開始逐漸轉換至微觀模型,部分學生能夠有效的進行轉換並習得正確概念,但仍有部分學生無法順利的建立微觀模型。在概念改變理論方面,本研究支持學生的概念系統在遭遇衝突時,少數學生原先的系統是整體完全轉變為新系統;大部分學生的概念系統是在長時間中累積系統成份的小幅變化而逐漸演變為完全正確的概念系統。
This is a cross-age study of students’ conceptions and mental models of the particulate model of gas. This study investigated 492 students at 6th grade, 8th grade, 9th grade, 11th grade (science major), 12th grade (science major), and juniors and seniors of department of Chemistry of a national university.
Results show that the four component of the model of the nature of gas, which include “the nature of gas is continuous or particulate,” “the distribution of gas in a container,” “vacuum between gases,” and “the movement of gas,” have shown a progressive revision as the educational age increased. Among these students, about 1/2 of 6th graders still hold the continuous view of the nature of gas; about 1/2 of 8th graders thought that the movement of gas has a specific direction; and the most robust misconception is “there is something else between gas particles (i.e. it is not vacuum),” even 30% of college students still have this misconception. 34 mental models of the nature of gas were found in this study. The varieties of mental models of 6th graders are the highest, then gradually converged with age to the complete science model and the pre-science model, which holds only one misconception: “there is something else between gas particles.”
Of the seven component concepts of the mental model of the ideal gas, results show that most 6th graders can choose the right answers on observable concepts such as “how the volume of the gas affect its pressure,” “how the number of particles of the gas affect its pressure,” and “how the temperature of the gas affect its pressure (or volume).” Among the concepts can not be observed, which include “the mechanism of the gas pressure,” “the relation between temperature and the velocity of gas particles,” “the relation between temperature and the size of the gas particles,” and “the pressure (or volume) differences between 2 kinds of gas with same quantity,” most of the students can not choose the right answer until 11th grade, except the second one which most of the 9th graders can choose the right answer. The most robust misconception of this model is: “the size of individual gas particle is affected by the temperature,” even college students have this conception. Researcher found 52 mental models of the ideal gas model in this study, but most of the students did not show a consistency of a single concept among their answers. The varieties of mental models remain the same from 6th grade to 11th grade, but the components concepts of the mental models gradually turn into correct ones. No complete scientific model found until 11th grade, and lots of pre-scientific model have been found in college.
The results of this study indicate that official school curriculum do have positive effect on students’ learning, but need to emphasize more on the particulate nature of gas. The results also support the hypothesis of conceptual evolution, which claims when student’s original conceptual system confronts a new system, it might not change the whole system at once, but accumulate small changes for a period of time, and the old conceptual system might gradually evolve to a completely correct new system.
參考文獻
一、中文部分
邱美虹. (2000):概念改變的省思與啟示. 科學教育學刊, 8(1), 1-34.
邱美虹(2006):台灣地區中學生「粒子與化學平衡」概念之心智模式與概念改變之研究(VI)。行政院國家科學委員會專題研究計劃成果報告(報告編號:NSC 94-2511-S-003-010-)
邱美虹,林靜雯,梁家祺,周金城,吳明珠,湯偉君,劉嘉茹,林秀蓁,林世洲,鄭瑛珍與張淑女譯(2003).Thagard, P.概念革命。台北: 洪葉出版社.
吳怡嫺、邱美虹(2006年12月):探究高中生氣體粒子概念之心智表徵與課本表徵之關聯性。中華民國第二十二屆科學教育學術研討會,國立臺灣師範大學。
林靜雯. (2006):由概念演化觀點探究不同教科書教--學序列對不同心智模式學生電學學習之影響. 國立台灣師範大學, 台北市.
舒遠招(1994)譯:Vollmer, G. 進化認識論。 武昌市: 武漢大學出版社.
郭奕玲與沈慧君 (1996): 物理通史 (1 ed.). 新竹市: 凡異出版社.
郭重吉,陳錦章,與張惠博.(1985): 協助國中學生學習正確物理概念的CAI教材軟體之設計實例--物質的分子模型. 教育學院學報, 10, 219-233.
陳星玉與陳小平譯(1995):Wiley, E. O., Siegel-Causy, D., Brooks, D. R., & Funk, V. A.支序學派大全:系統發育分析步驟入門。基隆市: 水產出版社.
陳盈吉. (2004):探究動態類比對於科學概念學習與概念改變歷程之研究--以國二學生學習氣體粒子概念為例. 國立台灣師範大學, 台北市.
陳郡鳳. (2005):探討理想氣體動力論之建模教學對高一學生建構微觀氣體粒子運動心智模式的影響. 國立台灣師範大學, 台北市.
葉篤莊,周建人與方宗熙譯(1998):Darwin, C.物種起源 台北市: 臺灣商務印書館.
黃台珠,熊召弟,王美芬,佘曉清,靳知勤,段曉林與熊同鑫譯(2002):Nussbaum, J. 科學史哲與建構主義教學的準備:粒子理論的案例. 載於 J. J. Mintzes, J. H. Wandersee & J. D. Novak (Eds.), 促進理解之科學教學:人本建構取向觀點 (pp. 177-210). 台北市: 心理出版社.
趙匡華. (1998):化學通史(上). 新竹: 凡異出版社.
鍾曉蘭、邱美虹(2006年12月):探究高二學生理想氣體中混合氣體的心智模式與概念改變。中華民國第二十二屆科學教育學術研討會,國立臺灣師範大學。
鄭昭明. (2004):認知心理學:理論與實踐 (2 ed.). 台北縣新店市: 桂冠圖書股份有限公司.
關洪. (2000):物理學史講座 (1 ed.). 新竹市: 凡異出版社.
二、英文部分
Alles, D. L. (2005). The nature of evolution. The American Biology Teacher, 67(1), 7-10.
Banerjee, A.C. (1991):Misconceptions of Students and Teachers in Chemical Equilibrium, International Journal of Science Education, 1991, 13 (4), 487-494
Benson, D. L., Wittrock, M. C., & Baur, M. E. (1993). Students' preconceptions of the nature of gases. Journal of Research in Science Teaching, 30(6), 587-597.
Boz, Y. (2006). Turkish pupils' conceptions of the particulate nature of matter. Journal of Science Education and Technology, 15(2), 203-213.
Bucat, R. (2005): An Analysis of Dimensions of Learning Chemistry- A non-linear Process: Knowledge of Chemistry content is different from knowledge about teaching that content- Pedagogical content knowledge, Speech at Graduate institute of Science Education, National Taiwan Normal University, Taipei, June 2005
Buckley, B. C. & Boulter, C. J. (2000). Investigating the Role of Representations and Expressed Models in Building Mental Models. In J. K. Gilbert and C.J. Boulter(eds.), Developing Models in Science Education (pp.119-135.) Netherlands: Kluwer Academic Publishers.
Calik, M., & Ayas, A. (2005). A comparison of level of understanding of eighth-grade students and science student teachers related to chemistry concepts. Journal of Research in Science Teaching, 42(6), 638-667.
Carey, S. (2000). Science education as conceptual change. Journal of Applied Developmental Psychology, 21(1), 13-19.
Chi, M. T. H. (2005). Commonsense conceptions of emergent process: Why some misconceptions are robust. The Journal of the Learning Science, 14(2), 161-199.
Chi, M. T. H., & Hausmann, R. G. M. (2003). Do radical discoveries require ontological shift? In L. V. Shavinina & R. Sternberg (Eds.), International handbook of innovation (Vol. 3, pp. 430-444). New York: Elsevier Science Ltd.
Chi, M. T. H., & Roscoe, R. D. (2002). The processes and challenges of conceptual change. In M. Limon & L. Mason (Eds.), Reconsidering conceptual change: Issues in theory and practice (pp. 3-27). The Netherlands: Kluwer Academic Publishers.
Chinn, C. A., & Brewer, W. F. (1993). The role of anomalous data in knowledge acquisition: A theoretical framework and implications for science instruction. Review of Educational Research, 63(1), 1-49.
Chiu, M. H., Chou, C. C., & Liu, C. J. (2002). Dynamic process of conceptual change: Analysis of constructing mental models of chemical equilibrium. Journal of Research in Science Teaching, 39(8), 688-712.
Chiu, M.H., Guo, C.J., & Treagust, D. F. (2007). Assessing Students’ Conceptual Understanding in Science: An introduction about a national project in Taiwan. International Journal of Science Education, 29(4), 379-390.
Chiu, M. H. (2007). A National Survey of Students’ Conceptions of Chemistry in Taiwan. International Journal of Science Education, 29(4), 421-452.
Chung, S. L., Wu, Y. H., & Chiu, M. H. (2006, August). A computerized assessment tool for investigating students’ conceptions of particulate model of ideal gas. Paper presented at 19th International Conference on Chemical Education, Seoul, Korea.
Driver, R., Gusesne, E., & Tiberghien, A. (1985). Children's ideas and the learning of science. In R. Driver, E. Gusesne & A. Tiberghien (Eds.), Children's ideas in science. Buckingham: Open University press.
Driver, R., Squire, A., Rushworth, P., & Wood-Robinson, V. (1994). Making sense of secondary science: Research into children’s ideas. New York: Routledge.
Duit, R. (1999). Conceptual change approach in science education. In W. Schnotz, S. Vosniadou & M. Carretero (Eds.), New perspectives on conceptual change (pp. 263-282). Oxford: Elsevier Science Ltd.
diSessa, A. A., Gillespie, N.. M., & Esterly, J. B. (2004). Coherence versus Fragmentation in the Development of the Concept of Force, Cognitive Science, 28, 843-900
Fransco, C. & Colinvaux, D. (2000). Grasping Mental Models. In J. K. Gilbert and C.J. Boulter(eds.), Developing Models in Science Education (pp.93-118.) Netherlands: Kluwer Academic Publishers.
Hewson, P. W., & Hewson, M. G. A. (1992). The status of students' conceptions. In R. Duit, F. Goldberg & H. Niedderer (Eds.), Research in physics learning: Theoretical issues and empirical studies (pp. 59-73). Kiel, Germany: Leibniz Institute for Science Education.
Hull, D. L. (1988). Science as a process: An evolutionary account of the social and conceptual development of science. London: The University of Chicago Press, Ltd.
Johnson-Laird, P. N. (1994). Mental Models, Deductive Reasoning, and the Brain. In M. S. Gazzaniga (Eds.), The Cognitive Neural Science (pp.999-1008). Cambridge: The MIT Press.
Johnson-Laird, P. N. & Byrne, R. (2000): A Gentle Introduction, Mental Model Website, http://www.tcd.ie/Psychology/Ruth_Byrne/mental_models/
Johnson, P. (1998). Progression in children's understanding of a "basic" particle theory: A longitudinal study. International Journal of Science Education, 20(4), 393-412.
Kozma, R.., Chin, E., Russell, J., & Marx, N. (2000). The Roles of Representations and Tools in the Chemistry Laboratory and Their Implications for Chemistry Learning, The Journal of the Learning Science, 9(2), 105-143
Mayr, E., & Ashlock, P. D. (1991). Principles of systematic zoology (2 ed.). New York: McGRAW-HILL.
McClure, J. R., Sonak, B. & Suen, H. K. (1999): Concept Map Assessment of Classroom Learning: Reliability, Validity, and Logistical Practicality. Journal of Research in Science Teaching, 1999, 36 (4), 475-492
Nakhleh, M. B. & Krajcik, J. S. (1994): Influence of Levels of Information as Presented by a Different Technologies on Students’ Understanding of Acid, Base, and pH concepts, Journal of Research in Science Teaching, 31(10), 1077-1096
Nussbaum, J. (1985). The particulate nature of matter in the gaseous phase. In R. Driver, E. Guesne & A. Tiberghien (Eds.), Children's ideas in science. Buckingham: Open University Press.
Nussbaum, J., & Novick, S. (1982). Alternative framworks, conceptual conflict and accommodation: Toward a principled teaching strategy. Instructional science, 11, 183-200.
Papageorgiou, G., & Johnson, P. (2005). Do particle ideas help or hinder pupils' understanding of phenomena? International Journal of Science Education, 27(16), 1299-1317.
Piaget, J. (1964, 2003). Cognitive Development in Children: Development and Learning, Journal of Research in Science Teaching, 40(supplement), S8-S18
Popper, K. (1987). Natural selection and the emergence of mind. In G. Radnitzky & W. W. Bartley (Eds.), Evolutionary epistemology, rationality, and the sociology of knowledge (pp. 139-155). La Salle: Open Court Publishing Company.
Posner, G. J., Strike, K. A., Hewson, P. W., & Gertzog, W. A. (1982). Accommodation of a scientific conception: Toward a theory of conceptual change. Science Education, 66(2), 211-227.
Pozo, J. I., & Gomez-Crespo, M. A. (2005). The embodied nature of implicit theories: The consistency of ideas about the nature of matter. Cognition and Instruction, 23(3), 351-387.
Ross, B. & Munby, H. (1991): Concept Mapping and Misconceptions: A Study of High-School Students’ Understandings of Acids and Bases, International Journal of Science Education, 1991, 13(1), 11-23
Sere, M.-G. (1986). Children's conceptions of the gaseous state, prior to teaching. European Journal of Science Education, 8(4), 413-425.
Sere, M.-G. (1987). A study of some frameworks used by pupils aged 11 to 13 years in the interpretation of air pressure. European Journal of Science Education, 4(3), 299-309.
Silberberg, M. (1996). Chemistry: The molecular nature of matter and change (3rd ed.). St. Louis: Mosby-Year Book Inc.
Stavy, R. (1990). Children's conception of changes in the state of matter: From liquid (or solid) to gas. Journal of Research in Science Teaching, 27(3), 247-266.
Stavy, R. (1991). Using analogy to overcome misconceptions about conservation of matter. Journal of Research in Science Teaching, 28(4), 305-313.
Thagard, P. (1992). Conceptual Revolutions. Princeton: Princeton University Press.
Toulmin, S. (1972). Human understanding: The collective use and evolution of concepts. Princeton: Princeton University Press.
Vosniadou, S. (1994). Capturing and Modeling the Process of Conceptual Change, Learning and Instruction, 4, 45-69
Vosniadou, S. (1999). Conceptual change research: State of the art and future directions. In W. Schnotz, S. Vosniadou & M. Carretero (Eds.), New perspectives on conceptual change (pp. 3-13). Oxford: Elsevier Science Ltd.