研究生: |
林宗佑 Lin, Zong-You |
---|---|
論文名稱: |
二維材料介面導致鐵薄膜磁耦合分離現象 Magnetic decoupling of ferromagnetic coverage across atomic step of MoS2 flakes on SiO2 surface |
指導教授: |
林文欽
Lin, Wen-Chin |
學位類別: |
碩士 Master |
系所名稱: |
物理學系 Department of Physics |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 53 |
中文關鍵詞: | 二硫化鉬 、磁性 、二維材料 、磁耦合分離 |
英文關鍵詞: | MoS2, magnetism, two-dimensional material, magnetic decoupling |
DOI URL: | http://doi.org/10.6345/THE.NTNU.DP.007.2018.B04 |
論文種類: | 學術論文 |
相關次數: | 點閱:214 下載:35 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗旨在於探討鐵磁薄膜沉積在單層二硫化鉬(MoS2)與二氧化矽基板(SiO2 /Si(100))兩種不同表面上產生的矯頑場(coercivity)差異,其鐵薄膜具有不連續的磁耦合分離性質,並分析推測此現象的可能來源。
我們利用自製的化學氣相沉積系統(Chemical Vapor Deposition)合成大量二硫化鉬單層薄膜於二氧化矽基板,並以原子力顯微鏡(Atomic Force Microscope)、拉曼光譜儀(Raman spectrum)驗證其大多為單層的厚度結構。其後於超高真空環境(10-9 torr)蒸鍍鐵薄膜於其上,再以磁光科爾顯微鏡(magneto optical kerr mi-croscope)量測之。結果上,我們發現樣品表面的磁滯曲線(hysteresis loop)呈現非方正的鐵磁曲線,呼應我們對於鐵膜微觀表面上具有許多磁性粒子團的預測,且異質介面導致鐵薄膜在不同介面上有著相異的矯頑場,是為鐵薄膜磁耦合分離現象,此現象伴隨著鐵薄膜厚度提升而逐漸消失。
In this study, we deposited Fe films on MoS2 flakes, and investigated the microscopic magnetic behavior on individual flake. The MoS2 flakes were fabricated on SiO2/Si(100) substrates using chemical vapor deposition. Fe coverage was deposited on the MoS2 flakes by e-beam evaporation with a thin Pd capping for the protection. Investigations by atomic force microscope and Raman spectroscopy confirmed that the MoS2 flakes were of the lateral size: 10-20 µm and mostly single layer thick. Af-ter depositing 3.6-7.0 nm Fe on MoS2/SiO2, clear hysteresis loops were observable with the in-plane magnetic field. From the investigation using a magneto-optical Kerr microscope, we measured the hysteresis curves of individual MoS2 flakes. Alt-hough the Fe coverage was much thicker than the MoS2 atomic step height (∼0.66 nm) and the direct connection and strong ferromagnetic coupling between Fe/MoS2 and Fe/SiO2 was expected, the magnetic decoupling between the magnetic domains of Fe/MoS2 and Fe/SiO2 was surprisingly observed. For 3.6 nm Fe/MoS2, the magnetic coercivity (Hc) was 28±5 Oe, while in contrast, the Hc of 3.6 nm Fe/SiO2 ranged 58±5 Oe. With a thicker Fe coverage, the Hc of interface converged and the magnetic de-coupling became vague to observe. The distinct interface magnetic anisotropy of Fe on different substrates could be responsible for the observed magnetic decoupling across the MoS2 atomic step between Fe/MoS2 and Fe/SiO2 domains. These observa-tions will be valuable in combining a magnetic coverage with a single layer MoS2 for the future spintronic applications.
[1] Applied Materials Today 3 (2016) 23–56, Zuoli He, Wenxiu Que, “Molyb-denum disulfide nanomaterials: Structures, properties, synthesis and recent pro-gress on hydrogen evolution reaction”
[2] University of Sheffield Library Copy – pdf version, Mannan Ali, “Growth And Study Of Magnetostrictive FeSiBC Thin Films For Device Applications”, (1999)
[3] 維基百科-拉曼光譜學-https://zh.wikipedia.org/wiki/%E6%8B%89%E6%9B%BC%E5%85%89%E8%AD%9C%E5%AD%B8
[4] AFM(Atomic Force Microscope)-University of Greifswald-https://physik.uni-greifswald.de/en/soft-matter-and-biophysics-prof-christiane-helm/methods/afm-atomic-force-microscope/
[5] Nanosurf easy Scan2 Flex AFM原子力顯微鏡原理簡介,曹勝益,三朋儀器股份有限公司-pic.ypu.edu.tw/ezfiles/29/1029/img/1068/AFMintroduction.ppt
[6] Nano Lett. 2013, 13, 5944−5948, Shinichiro Mouri, Yuhei Miyauchi, and Ka-zunari Matsuda, “Tunable Photoluminescence of Monolayer MoS2 via Chemical Doping”
[7] Small 2012, 8, No. 7, 966–971, Yongjie Zhan, Zheng Liu, Sina Najmaei, Pu-lickel M. Ajayan, and Jun Lou, “Large-Area Vapor-Phase Growth and Character-ization of MoS2 Atomic Layers on a SiO2 Substrate”
[8] Chem. Mater. 2014, 26, 6371−6379, Shanshan Wang, Youmin Rong, Ye Fan, Mercè Pacios, Harish Bhaskaran, Kuang He,and Jamie H. Warner, “Shape Evolu-tion of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition”
[9] Nano Lett. 2012, 12, 4674−4680, Han Wang, Lili Yu, Yi-Hsien Lee, Yumeng Shi, Allen Hsu, Matthew L. Chin, Lain-Jong Li, Madan Dubey, Jing Kong, and Tomas Palacios, “Integrated Circuits Based on Bilayer MoS2 Transistors”
[10] J. Phys. D: Appl. Phys. 50 (2017) 415001 (7pp), C.C. Hsu, Zong-You Lin, P.C. Chang, H.C. Chiu, H.W. Chen, H.L. Liu, F. B. and W.C. Lin, “Magnetic decoupling of Fe coverage across atomic step of MoS2 flakes on SiO2 surface”
[11] 維基百科-化學氣相沉積-http://zh.wikipedia.org/zh/%E5%8C%96%E5%AD%A6%E6%B0%94%E7%9B%B8%E6
[12] Applied Surface Science 357 (2015) 551–557, H.C. Hsu, C.B. Wu, K.L. Hsu, P.C. Chang, T. Y. Fu, V. R. Mudinepalli, W.C. Lin
[13] Scientific Reports | 5:18596 | DOI: 10.1038/srep18596, Ziyuan Lin, Yuda Zhao, Changjian Zhou, Ren Zhong, Xinsheng Wang, Yuen Hong Tsang &Yang Chai,“Controllable Growth of Large–Size Crystalline MoS2 and Resist-Free Transfer Assisted with a Cu Thin Film”
[14] Chem. Mater. 2014, 26, 6371−6379, Shanshan Wang, Youmin Rong, Ye Fan, Mercè Pacios, Harish Bhaskaran, Kuang He, and Jamie H. Warner.” Shape Evolu-tion of Monolayer MoS2 Crystals Grown by Chemical Vapor Deposition”