簡易檢索 / 詳目顯示

研究生: 陳筱嵐
Hsiao-Lan Chen
論文名稱: 銅蛋白質模型錯合物研究:雙(2啶甲基)醚之銅錯合物的合成、結構及性質研究
指導教授: 蘇展政
Su, Chan-Cheng
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2003
畢業學年度: 91
語文別: 中文
中文關鍵詞: 高斯交疊解析p-acceptor配位基2,4-二-特-丁基苯酚催化氧化
英文關鍵詞: Gaussian analyses, p-acceptor ligand, 2,4-di-tert-butyl-phenol, catalytic oxidation
論文種類: 學術論文
相關次數: 點閱:136下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要
    本研究以雙(2-啶甲基)醚(bpmo)為主要的配子,共合成四個系列二價銅錯合物:
    (1)[Cu(bpmo)(NN)](ClO4)2:其中NN包括2,2’-聯啶(bipy)、1,10-二氮雜菲(phen)、N,N,N’,N’-四甲基乙二胺(tmen)。
    (2)[Cu(bpmo)(N)](ClO4)2:其中N包括4-甲基啶(4Mepy)、N-甲基咪唑(NMeIm)、2-甲基醇啶(pyCH2OH)。
    (3)[Cu(bpmo)(X)2]:其中X包括Br、Cl。
    (4)[Cu(bpmo)2](ClO4)2。
    利用元素分析、X光結構解析、紅外光光譜、電子吸收光譜、電子順磁共振光譜及可見光高斯交疊解析等,完成錯合物的結構鑑定及鍵結性質的探討。
    目前已完成X光單晶結構解析的二價銅錯合物有:
    (a) fac-[Cu(bpmo)(bipy)(ClO4)](ClO4)
    屬三斜晶系(Triclinic),空間群為P-1,晶格常數a = 8.8186(1)Å,b = 10.6142(2)Å,c = 15.0084(4)Å,a = 88.644(1)º,b = 75.102(1)º,g = 67.897(2)º,每單位晶格內有2個分子(Z = 2),精算值R = 0.047,Rw = 0.090。
    (b) fac-[Cu(bpmo)(phen)](ClO4)2
    屬單斜晶系(Monoclinic),空間群為C2/m,晶格常數a = 19.0002(4)Å,b = 10.9264(3)Å,c = 16.8516(4)Å,a = 90.00º,b = 117.310(2)º,g = 90.00º,每單位晶格內有4個分子(Z = 4),精算值R = 0.141,Rw = 0.267。
    (c) fac-[Cu(bpmo)(tmen)(CH3CN)](ClO4)2(CH3CN)
    屬單斜晶系(Monoclinic),空間群為P21/n,晶格常數a = 8.308(2)Å,b = 17.208(5)Å,c = 21.242(8)Å,a = 90.00º,b = 100.07(3)º,g = 90.00º,每單位晶格內有4個分子(Z = 4),精算值R = 0.109,Rw = 0.141。
    (d) mer-[Cu(bpmo)(4Mepy)(ClO4)](ClO4)(H2O)
    三斜晶系(Triclinic),空間群為P-1,晶格常數a = 8.3778(1)Å,b = 8.6333(2)Å,c = 18.3404(5)Å,a = 76.641(1)º,b = 83.815(1)º,g = 62.407(1)º,每單位晶格內有2個分子(Z = 2),精算值R = 0.102,Rw = 0.256。
    (e) mer-[Cu(bpmo)(NMeIm)(ClO4)](ClO4)
    三斜晶系(Triclinic),空間群為P-1,晶格常數a = 8.388(8)Å,b = 8.693(3)Å,c = 16.599(3)Å,a = 78.58(2)º,b = 82.68(5)º,g = 62.86(5)º,每單位晶格內有2個分子(Z = 2),精算值R = 0.064,Rw = 0.066。
    (f) mer-[Cu(bpmo)(Br)2]
    屬單斜晶系(Monoclinic),空間群為P21/n,晶格常數a = 8.2448(2)Å,b = 12.8300(3)Å,c = 13.1692(4)Å,a = 90.00º,b = 92.458(1)º,g = 90.00º,每單位晶格內有4個分子(Z = 4),精算值R = 0.049,Rw = 0.102。
    (g) mer-[Cu(bpmo)(Cl)2]
    屬單斜晶系(Monoclinic),空間群為P21/n,晶格常數a = 8.1618(2)Å,b = 12.5669(3)Å,c = 12.8289(4)Å,a = 90.00º,b = 91.622(1)º,g = 90.00º,每單位晶格內有4個分子(Z = 4),精算值R = 0.031,Rw = 0.063。
    由系列(1)及系列(4)錯合物的溶液態可見光光譜高斯解析結果,
    顯示三牙基配子bpmo為π-acceptor配位基。
    bpmo銅錯合物的反應性研究,探討配子bpmo在室溫下與一價銅形成錯合物後與氧氣的反應,發現配子bpmo所形成的一價銅錯合物,可將2,4-二-特-丁基苯酚催化氧化成3,3¢,5,5¢-四-特-丁基-2,2¢-聯苯酚,推測其反應過程中可能有形成bis(m-oxo)dicopper(Ⅲ)的錯合物。

    Abstract
    Four types of copper(II) complexes of bis(2-pyridylmethyl)ether
    (bpmo) have been prepared.
    (1)[Cu(bpmo)(NN)](ClO4)2, where NN stands for 2,2’-bipyridine (bipy), 1,10-phenanthroline (phen), and N,N,N’,N’-tetramethylethylene-
    diamine (tmen).
    (2)[Cu(bpmo)(N)](ClO4)2, where N represents 4-methylpyridine (4Mepy), N-methylimidazole (NMeIm), and 2-(Hydroxymethyl)pyridine
    (pyCH2OH).
    (3)[Cu(bpmo)(X)2], where X is Br and Cl.
    (4)[Cu(bpmo)2](ClO4)2.
    These complexes have been characterized by elemental analyses, IR, UV-VIS, and EPR spectroscopic measurements, and single-crystal X-ray diffraction. The crystal data of the complexes are described below:
    (a) fac-[Cu(bpmo)(bipy)(ClO4)](ClO4)
    Triclinic, space group P-1, a = 8.8186(1)Å, b = 10.6142(2)Å, c = 15.0084(4)Å, a = 88.644(1)º, b = 75.102(1)º, g = 67.897(2)º, Z = 2, R = 0.047, Rw = 0.090.
    (b) fac-[Cu(bpmo)(phen)](ClO4)2
    Monoclinic, space group C2/m, a = 19.0002(4)Å, b = 10.9264(3)Å, c = 16.8516(4)Å, a = 90.00º, b = 117.310(2)º, g = 90.00º, Z = 4, R = 0.141, Rw = 0.267.
    (c) fac-[Cu(bpmo)(tmen)(CH3CN)](ClO4)2(CH3CN)
    Monoclinic, space group P21/n, a = 8.308(2)Å, b = 17.208(5)Å, c = 21.242(8)Å, a = 90.00º, b = 100.07(3)º, g = 90.00º, Z = 4, R = 0.110, Rw =0.312.
    (d) mer-[Cu(bpmo)(4Mepy)(ClO4)](ClO4)(H2O)
    Triclinic, space group P-1, a = 8.3778(1)Å, b = 8.6333(2)Å, c = 18.3404(5)Å, a = 76.641(1)º, b = 83.815(1)º, g = 62.407(1)º, Z = 2, R = 0.102, Rw = 0.256.
    (e) mer-[Cu(bpmo)(NMeIm)(ClO4)](ClO4)
    Triclinic, space group P-1, a = 8.388(8)Å, b = 8.693(3)Å, c = 16.599(3)Å, a = 78.58(2)º, b = 82.68(5)º, g = 62.86(5)º, Z = 2, R = 0.064, Rw = 0.066.
    (f) mer-[Cu(bpmo)(Br)2]
    Monoclinic, space group P21/n, a = 8.2448(2)Å, b = 12.8300(3)Å, c = 13.1692(4)Å, a = 90.00º, b = 92.4581(11)º, g = 90.00º, Z = 4, R = 0.049, Rw = 0.102.
    (g) mer-[Cu(bpmo)(Cl)2]
    Monoclinic, space group P21/n, a = 8.1618(2)Å, b = 12.5669(3)Å, c = 12.8289(4)Å, a = 90.00º, b = 91.622(1)º, g = 90.00º, Z = 4, R = 0.031, Rw = 0.063.
    Based on Gaussian analyses of the solution LF spectra of the type (1) and (2) complexes, the bpmo binds to copper as a p-acceptor.
    The reactions of O2 with the Cu(I) complex, [Cu(bpmo)]+, at room temperature have been investigated. The reaction of 2,4-di-tert-butyl-
    phenol with O2 in the presence of [Cu(bpmo)]+ yields the dimeric product, 3,3¢,5,5¢-tetra-tert-butyl-2,2¢-biphenol, suggesting the formation of the bis(m-oxo)dicopper(Ⅲ) intermediate.

    目錄 中文摘要…………………………………………………………….…Ⅰ 英文摘要…………………………………………………………..……Ⅲ 第一章 緒論 第一節 研究動機與目的……………………………………….…1 第二節 相關文獻探討…………………………………………….2 第二章 實驗部分 第一節 實驗儀器及藥品………………………………………….26 第二節 配子及錯合物的合成…………………………………….30 第三節 配子bpmo與一價銅形成錯合物後與氧氣的反應……..39 第四節 2,4-二-特-丁基苯酚的氧化反應…………………………40 第五節 3,5-二-特-丁基鄰苯二酚的催化氧化反應………………41 第六節 苯甲醇的氧化反應……………………………………….42 第三章 [Cu(bpmo)(NN)](ClO4)2系列 第一節 前言………………………………………………………43 第二節 配子的合成及光譜探討…………………………………45 第三節 結果與討論………………………………………………48 第四節 結論………………………………………………………78 第四章 [Cu(bpmo)(N)](ClO4)2系列及[Cu(bpmo)(X)2]系列 第一節 前言………………………………………………………79 第二節 結果與討論………………………………………………81 第三節 結論……………………………………………………..109 第五章 [Cu(bpmo)2](ClO4)2的結構、光譜與鍵結性質 第一節 前言…………………………………………………….110 第二節 結果與討論……………………………………………..116 第三節 結論……………………………………………………..132 第六章 銅蛋白質模型錯合物的反應研究 第一節 含三牙基bpmo一價銅錯合物與氧氣的反應與探討…133 第二節 2,4-二-特-丁基苯酚的氧化反應……………………….139 第三節 3,5-二-特-丁基鄰苯二酚的催化氧化反應…………….142 第四節 苯甲醇的氧化反應……………………………………..145 第七章 總結論………………………………………………………..148 參考文獻………………………………………………………………149 附錄 附錄A NMR、MS光譜……………………………………………….A1 附錄B X光單晶結構解析數據與結果………………………………B1 附錄C IR光譜………………………………………………………..C1 附錄D 可見光光譜…………………………………………………..D1 附錄E 紫外光光譜…………………………………………………...E1 附錄F 室溫粉末態EPR光譜………………………………………..F1 附錄G 77K溶液態EPR光譜………………………………………..G1

    參考文獻
    1. Volbeda, A.; Hol, W. G. J. J. Mol. Biol. 1989, 206, 531.
    2. Magnus, K. A.; Ton-That, H.; Carpenter, J. E. in Bioinorganic Chemistry of Copper, Karlin, K. D.; Tyeklar, Z. Eds., Chapman & Hall, New York, 1993, p143-150.
    3. (a) Dooley, D. M.; Scott, R. A.; Ellinhaus, J.; Solomon, E. I.; Gray, H. B. Proc.Natl. Acas. Sci. U. S. A., 1978, 75, 3019. (b) Moss,T. H.; Gould, D. C.; Ehrenberg, A.; Loehr, J. S.; Mason, H. S. Biochemistry 1973, 12, 2444.; (c) Solomon, E. I.; Dooley, D. M.; Wang, R. H.; Gray, H. B.; Cerdonio, M.; Mogno, F.; Romani,G. L. J. Am. Chem. Soc. 1976, 98, 1029.
    4. Solomon, E. I.; Chen, P.; Metz, M.; Palmer. A.; Lee, S-K. Angew. Chem. Int. Ed. 2001, 40, 4570.
    5. (a) Kitajima, N.; Fujisawa, K.; Moro-oka, Y.; Toriumi, K. J. Am. Chem. Soc. 1989, 111, 8975. (b) Kitajima, N.; Fujisawa, K.; Moro-oka, Y.; Hashimoto, S.; Kitajima, T.; Toriumi, K.; Tataumi, K.; Nakamura, A. J. Am. Chem. Soc. 1992, 114, 1277.
    6. Sorrell, T. N.; Allen, W. E.; White, P. S. Inorg. Chem. 1995, 34, 952.
    7. Sanyal, I.; Mahroof-Tahir, M.; Nasir, M. S.; Gbosh, P.; Coben, B. I.; Gultneh, Y.; Cruse, R. W.; Farooq, A.; Karlin, K. D.; Liu, S.; Zubietat, J. Inorg. Chem. 1992, 31, 4322.
    8. Pidcock, E.; DeBeer, S.; Obias, H. V.; Hedman, B.; Hodgson, K. O.; Karlin, K. D.; Solomon, E. I. J. Am. Chem. Soc. 1999, 121, 1870.
    9. Karlin, K. D.; Haka, M. S.; Cruse, R. W.; Gultneh, Y. J. Am. Chem. Soc. 1985, 107, 5828.
    10. Pidcock, E.; Obias, H. V.; Abe, M.; Liang, H.-C.; Karlin, K. D.; Solomon, E. I. J. Am. Chem. Soc. 1999, 121, 1299.
    11. Karlin, K. D.; Haka, M. S.; Cruse, R. W.; Meyer, G. J.; Farooq, A.; Gultneh, Y.; Hayes, J. C.; Zubieta, J. J. Am. Chem. Soc. 1988, 110, 1196.
    12. Cahoy, J.; Holland, P. L.; Tolman, W. B. Inorg. Chem. 1999, 38, 2161.
    13. Mahadevan, V.; Henson, M. J.; Solomon, E. I.; Stack, T. D. P. J. Am. Chem. Soc. 2000, 122, 10249.
    14. Liang, H.-C.; Zhang, C. X.; Henson, M. J.; Sommer, R. D.; Hatwell, K. R.; Kaderli, S.; Zuberbühler, A. D.; Rheingold, A. L.; Solomon, E. I.; Karlin, K. D. J. Am. Chem. Soc., 2002, 124, 4170.
    15. Taki, M.; Teramae, S.; Nagatomo, S.; Tachi, Y.; Kitagawa, T.; Itoh, S.; Fukuzumi, S. J. Am. Chem. Soc. 2002, 124, 6367.
    16. Itoh, S.; Kumei, H.; Taki, M.; Nagatomo, S, Kitagawa, T.; Fukuzumi, S. J. Am. Chem. Soc. 2001, 123, 6708.
    17. Halfen, J. A.; Mahapatra, S.; Wilkinson. E. C.; Kaderli, S.; Young Jr., V. G.; Que Jr., L.; Zuberbühler, A. D.; Tolman, W. B. Science 1996, 271, 1397.
    18. Mirica, L. M.; Vance, M.; Rudd, D. J.; Hedman, B.; Hodgson, K. O.; Solomon, E. I.; Stack, T. D. P. J. Am. Chem. Soc. 2002, 124, 9332.
    19. Karlin, K. D.; TyeklBr, Z.; Farooq, A.; Haka, M. S.; Ghosh, P.; Cruse, R. W.; Gultneh, Y.; Hayes, J. C.; Toscano, P. J.; Zubietao, J. Inorg. Chem. 1992, 31, 1436.
    20. Karlin, K. D.; Nasir, M. S.; Cohen, B. I.; Cruse, R. W.; Kaderli, S.; Zuberbühler, A. D. J. Am. Chem. Soc. 1994, 116, 1324.
    21. Kodera, M.; Katayama, K.; Tachi, Y.; Kano, K.; Hirota, S.; Fujinami, S.; Suzuki, M. J. Am. Chem. Soc. 1999, 121, 11006.
    22. Liang, H.-C.; Karlin, K. D.; Dyson, R.; Kaderli, S.; Jung, B.; Zuberbühler, A. D. Inorg. Chem. 2000, 39, 5884.
    23. Pidcock, E.; Obias, H. V.; Zhang, C. X.; Karlin, K. D.; Solomon, E. I. J. Am. Chem. Soc. 1998, 120, 7841.
    24. (a) Hu, Z.; Williams, R. D.; Tran, D.; Spiro, T. G.; Gorun, S. M. J. Am. Chem. Soc. 2000, 122, 3556. (b) Hu, Z.; George, G. N.; Gorun, S. M. Inorg. Chem. 2001, 40, 4812.
    25. Mahapatra, S.; Halfen, J. A.; Wilkinson, E. C.; Pan, G.; Cramer, C. J.; Que, L., Jr.; Tolman, W. B. J. Am. Chem. Soc. 1995, 117, 8865.
    26. Mahapatra, S.; Halfen, J. A.; Wilkinson, E. C.; Pan, G.; Wang, X.; Young, V. G., Jr.; Cramer, C. J.; Que, L., Jr.; Tolman, W. B. J. Am. Chem. Soc. 1996, 118, 11555.
    27. Que, L., Jr.; Tolman, W. B. Angew. Chem. Int. Ed. 2002, 41, 1114.
    28. Mahadevan, V.; Hou, Z.; Cole, A. P.; Root, D. E.; Lal, T. K.; Solomon, E. I.; Stack, T. D. P. J. Am. Chem. Soc. 1997, 119, 11996.
    29. Mahapatra, S.; Young, V. G., Jr.; Kaderli S.; Zuberbühler, A. D.; Tolman, W. B. Angew. Chem. Int. Ed. 1997, 36, 130.
    30. Hayashi, H.; Fujinami, S.; Nagatomo, S.; Ogo, S.; Suzuki, M.; Uehara, A.; Watanabe, Y.; Kitagawa, T. J. Am. Chem. Soc. 2000, 122, 2124.
    31. Straub, B. F.; Rominger, F.; Hofmann, P. Chem. Commun. 2000, 1611.
    32. DuBois, J. L.; Mukherjee, P.; Collier, A. M.; Mayer, J. M.; Solomon, E. I.; Hedman, B.; Stack, T. D. P.; Hodgson, K. O. J. Am. Chem. Soc. 1997, 119, 8578.
    33. Mahadevan, V.; DuBois, J. L.; Hedman, B.; Hodgson, K. O.; Stack, T. D. P. J. Am. Chem. Soc. 1999, 121, 5583.
    34. Aboelella, N. W.; Lewis, E. A.; Reynolds, A. M.; Brennessel, W. W.; Cramer, C. J.; Tolman, W. B. J. Am. Chem. Soc. 2002, 124, 10660.
    35. Halfen, J. A.; Mahapatra, S.; Wilkinson, E. C.; S. Kaderli, S.; Young, V. G., Jr.; Que, L., Jr.; Zuberbühler, A. D.; Tolman, W. B. Science 1996, 271, 1397.
    36. Solomon, E. I.; Sundaram, U. M.; Machonkin, T. E. Chem. Rev. 1996, 96, 2563.
    37. Taki, M.; Itoh, S.; Fukuzumi, S. J. Am. Chem. Soc. 2001, 123, 6203.
    38. Obias, H. V.; Lin, Y.; Murthy, N. N.; Pidcock, E.; Solomon,E. I.; Ralle, M.; Blackburn, N. J.; Neuhold, Y.-M.; Zuberbühler, A. D.; Karlin, K. D. J. Am. Chem. Soc. 1998, 120, 12960.
    39. Zhang, C. X.; Liang, H.-C.; Kim, E.; Shearer, J.; Helton, M. E.; Kim, E.; Kaderli, S.; Incarvito, C. D.; Zuberbühler, A. D.; Rheingold, A. L.; Karlin, K. D. J. Am. Chem. Soc. 2003, 125, 634.
    40. Toso, R.; Sega, A.; Mihalic, M.; Kajfez, F.; Sunjic, V. Gazz. Chim. Ital. 1979, 109, 529.
    41. 孫嘉芳,國立台灣師範大學化學研究所碩士論文,2002。
    42. Nanty, D.; Laurent, M.; Khan, M. A.; Ashby, M. T. Acta Cryst. 2000, C56, 35.
    43. Thornton, D. A.; Watkins, G. M. J. Coord. Chem. 1992, 25, 299.
    44. Plalniandavar, M.; Pandiyan, T.; Lakshminarayanan, M.; Manohar, H. J. Chem. Soc. Dalton Trans. 1995, 455.
    45. Palaniandavar, M.; Butcher, R. J.; Addison, A. W. Inorg. Chem. 1996, 35, 467.
    46. Hung, G.-S.; Lai, J.-K.; Ueng, C.-H.; Su, C.-C. Trans. Metal Chem. 2000, 25, 84.
    47. (a) Hodgson, P. G.; Penfield, B. R. J. Chem. Soc., Dalton Trans. 1974, 1870. (b) Stephens, F. J. Chem. Soc. A. 1969, 2233.
    48. Stephens, F. J. Chem. Soc. A. 1969, 883.
    49. 蔡秀緣,國立台灣師範大學化學研究所碩士論文,2002。
    50. Hathaway, B. J.; Underhill, A. E. J. Chem. Soc. 1961, 3091.
    51. 蔡惠蓮,國立台灣師範大學化學研究所碩士論文,1988。
    52. Aggarual, R. C.; Singh, R. P. Inorg. Chem. 1985, 20, 2794.
    53. Belford, R. L.; Calrin, M.; Belford, G. J. Chem. Phys. 1957, 26, 1165.
    54. Ray, N.; Hulett, L.; Sheahan, R.; Hathaway, B. J. Inorg. Nucl. Chem. Lett. 1978, 14, 305.
    55. 劉世鈞,國立台灣師範大學化學研究所博士論文,1995。
    56. Ray, N.; Hulett, L.; Sheahan, R.; Hathaway, B. J. J. Chem. Soc., Dalton Trans. 1981, 1463.
    57. Liu, S.-J.; Su, C.-C. Polyhedron, 1996, 15, 1141.
    58. Su, C.-C.; Lin, Y.-L.; Liu, S.-J.; Chang, T.-H.; Wang, S.-L.; Liao, F.-L. Polyhedron, 1993, 12(22), 2687.
    59. 吳秋月,國立台灣師範大學化學研究所博士論文,1996。
    60. Su, C.-C.; Wu, C.-Y. J. Coord. Chem. 1994, 33, 1.
    61. Su, C.-C.; Li, C.-B. Polyhedron, 1994, 13, 825.
    62. 黃進松,國立台灣師範大學化學研究所博士論文,1999。
    63. Torelli, S.; Belle, C.; Gautier-Luneau, I.; Pierre, J. L.; Saint-Aman, E.; Latour, J. M.; Pape, L. L.; Luneau, D. Inorg. Chem. 2000, 39, 3526.
    64. 蘇展政,吳秋月 化學 1996, 54, 57.
    65. Hathaway, B. J.; Wilkinson, G.; Gillard, R. D.; McCleverty, J. A., ‘Comprehensive Coordination Chemistry’, Vol. 5, Pergamon, Oxford, 1897, pp. 594-774.

    無法下載圖示
    QR CODE