簡易檢索 / 詳目顯示

研究生: 劉安倫
Liu, An-Lun
論文名稱: 利用熱力學積分分子動力學模擬計算GSK-3β 激酶與配體複合體之相對結合自由能:含嘧啶環的化合物
Relative Binding Free Energy Computation of GSK-3β Kinase-Ligand Complexes Using Thermodynamic Integration MD Simulation: Compounds with Pyrimidine Ring
指導教授: 孫英傑
Sun, Ying-Chieh
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 67
中文關鍵詞: 阿茲海默症熱力學積分分子動力學模擬相對結合自由能肝醣合成酶激酶-3β分子嵌合結合模式
英文關鍵詞: Alzheimer's disease, thermodynamic integration, molecular dynamics simulation, relative binding free energies, GSK-3β kinase, docking, binding mode
論文種類: 學術論文
相關次數: 點閱:201下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在阿茲海默症可能的發病機制探討中,人體腦部神經元中GSK-3β激酶蛋白過度磷酸化下游的tau蛋白被認為是其中一種主要的原因。透過抑制GSK-3β激酶可能減緩阿茲海默症症狀,甚至能達到治療成效。由於小分子與蛋白複合體間的結合自由能是反映抑制強度的重要物理量,本研究中使用熱力學積分分子動力學模擬輔助設計GSK-3β的競爭性抑制劑。此方法是利用參考分子與待測分子分別對目標蛋白的結合情況,去預測相對結合自由能(ΔΔG)。我們首先計算已知結晶構型及結合親和力的抑制劑。計算的結果與實驗值相差0.4 kcal/mol,顯示結果與實驗值吻合。接著我們利用同樣的計算流程預測自資料庫挑出的9個分子與已知結晶構型的參考分子ZRM之ΔΔG值。一開始本研究先假定分子的結合模式與ZRM相同,在這9個分子的計算結果當中,計算值均落在1.4-5.0 kcal/mol,是值得進行實驗測試的化合物。此外,本研究也探討了利用分子嵌合計算與這些結合構型的ΔΔG值,結果顯示9個分子有8個以原先類似ZRM的結合模式相同。這些預測小分子與蛋白之結合親和力與結合模式的結果將能輔助類似物分子抑制劑的設計。

    Among the proposed possible mechanisms of occurrence of Alzheimer’s disease (AD), over-phosphorylation of tau protein of neurons in human brain by GSK-3β kinase is considered to be one of the main causes. Inhibition of GSK-3β kinase activity may alleviate symptom of AD or even cure. In this study, thermodynamic integration-molecular dynamics simulation is used to aid in design of GSK-3β kinase inhibitors undergoing competitive inhibition mechanism for which binding free energy of ligand-protein complex is a key parameter reflecting the inhibition strength. This method predicts relative binding free energy (ΔΔG) of a compound and a reference compound binding with a target protein. For calibration purpose, computations for known inhibitors with crystal structure and binding affinity available were carried out first. The computed value deviated from experimental value by 0.4 kcal/mol, showing good agreement with experimental result. With the same computational protocol, we carry out computations to predict ΔΔG for 9 compounds analogous to a reference compound, referring to ZRM compound which has crystal structure available, first with the assumption that their binding modes are the same with ZRM’s. Among these 9 compounds, the best result was 1.4 kcal/mol and the compound was recommended for enzyme assay. To explore further, we investigated ΔΔG at different binding conformations obtained from docking computation. The results showed that 8 compounds adopted ZRM-like binding mode. Only 1 compound adopted different binding mode. The predicted binding affinities and binding modes should be useful in further design of inhibitors analogous to the examined compounds.

    謝誌 i 中文摘要 ii ABSTRACT iii 目錄 (CONTENTS) iv 圖目錄 (LIST OF FIGURES) vii 表目錄 (LIST OF TABLES) ix Chapter 1 緒論 1 1.1 前言 1 1.2 阿茲海默症 1 1.3 肝醣合成酶激酶-3 (Glycogen synthase kinase 3) 2 1.4 電腦輔助設計在藥物設計的角色 3 1.5 自由能計算的進展 3 1.6 GSK-3β抑制劑 3 1.7 研究目標 4 Chapter 2 理論與方法 5 2.1 熱力學積分 (Thermodynamic Integration, TI) 5 2.2 分子動力學模擬 (Molecular dynamics simulation) 8 2.3 分子模型的建構 8 2.3.1 蛋白質-配體複合體 8 2.3.2 結晶水 9 2.3.3 拓樸(topology)與座標檔的產生及使用的計算軟體 10 2.4 單步驟轉變(Single-transformation approach, STA) 11 2.5 熱力學積分分子動態(TI-MD)模擬 12 2.5.1 能量極小化 12 2.5.2 等體積升溫 12 2.5.3 等壓模擬 12 2.5.4 模擬執行檔案相關設定 13 2.5.5 新MD程式pmemd的簡介 14 2.6 分子嵌合(Molecular Docking) 17 2.6.1 分子嵌合技術 17 2.6.2 GOLD軟體設定 17 2.7 在文獻上實驗結果與計算G值之間的轉換 19 Chapter 3 結果與討論 21 3.1 ZRM, ZRL, ZRK間相對自由能計算 21 3.2 類ZRM的化合物 27 3.3 ZRM分子的取樣(sampling): 扭角的計算 30 3.4 九個新化合物 32 3.4.1 ZRM→FC2 33 3.4.2 ZRM→FC3 34 3.4.3 ZRM→FC4 36 3.4.4 ZRM→FC6 37 3.4.5 ZRM→FC7 39 3.5 FC系列分子與GSK-3β激酶之間的氫鍵 42 3.6 分子嵌合計算所得到不同結合構型之ΔΔG值 44 3.6.1 FC7 (conformation 1) 46 3.6.2 FC7 (conformation2) 48 3.6.3 FC7 (conformation 3) 49 3.7 不同結合構型下與周圍環境的氫鍵 52 3.7.1 FC7 (conformaiton 1) 52 3.7.2 FC7 (conformation 2) 53 3.7.3 FC7 (conformation 3) 54 3.8 ZRM與新分子間相對結合自由能計算結果整理 55 3.8.1 計算值ΔΔGbind > 5.0 kcal/mol 55 3.8.2 計算值ΔΔGbind ≈ 5.0 kcal/mol 55 3.8.3 計算值ΔΔGbind < 5.0 kcal/mol 55 Chapter 4 結論 57 REFERENCES 58 附錄 62

    1. F. Wandosell, J. Avila, F. Hernández, Role of Glycogen Synthase Kinase-3 in Alzheimer's Disease Pathogenesis and Glycogen Synthase Kinase-3 Inhibitors. Expert Rev. Neurother., 2010. 10: p. 703-710.
    2. H. W. Querfurth, F. M. LaFeria, Alzheimer's Disease. The N. Engl. J. Med. , 2010. 362: p. 329-344.
    3. P. T. Francis, A. M. Palmer, M. Snape, G. K. Wilcock, The Cholinergic Hypothesis of Alzheimer's Disease: A Review of Progress. J. Neurol. Neurosurg. Psychiatry, 1999. 66: p. 137-147.
    4. J. Hardy, D. Alsopp, Amyloid Deposition as the Central Event in the Aetiology of Alzheimer's Disease. Trends in Pharmacological Sciences, 1991. 12: p. 383-388.
    5. M. Utton, U. Wagner, J. Gallo, C. C. J. Miller, Cellular Phosphorylation of Tau by Gsk-3b Influences Tau Binding to Microtubules and Microtubule Organisation. Journal of Cell Science, 1996. 109: p. 1537-1543.
    6. C. Hooper, R. Killick, S. Lovestone, The GSK3 Hypothesis of Alzheimer's Disease. J. Neurochem., 2008. 104: p. 1433-1439.
    7. S. Phukan, V. S. Babu, A. Kannoji, R. Hariharan, V. N. Balaji, Gsk3beta: Role in Therapeutic Landscape and Development of Modulators. J. Br. Pharmacol., 2010. 160: p. 1-19.
    8. N. Embi, D. Rylatt, P. Cohen, Glycogen Synthase Kinase‐3 from Rabbit Skeletal Muscle. J. Eur. Biochem., 1980. 107: p. 519-527.
    9. L. A. Gil, P. A. Valiente, P. G. Pascutti, T. Pons, Computational Perspectives into Plasmepsins Structure-Function Relationship: Implications to Inhibitors Design. J. Trop. Med., 2011. 2011.
    10. D. L. Mobley, K. A. Dill, Binding of Small-Molecule Ligands to Proteins: "What You See" Is Not Always "What You Get". Structure, 2009. 17: p. 489-498.
    11. G. Gentile, G. Bernasconi, A. Pozzan, G. Merlo, P. Marzorati, P. Bamborough, B. Bax, A. Bridges, C. Brough, P. Carter, G. Cutler, M. Neu, M. Takada, Identification of 2-(4-Pyridyl)Thienopyridinones as Gsk-3beta Inhibitors. Bioorg. Med. Chem. Lett., 2011. 21: p. 4823-4827.
    12. H. C. Lee, W. C. Hsu, A. L. Liu, C. J. Hsu, Y. C. Sun, Using Thermodynamic Integration MD Simulaiton to Compute Relative Protein-Ligand Binding Free Energy of a GSK3β Kinase Inhibitor and Its Analogs. J. Molecular Graphics and Modelling, 2014. 51: p. 37-49.
    13. J. G. Kirkwood, Statistical Mechanics of Fluid Mixtures. J. Chem. Phys., 1935. 3: p. 300.
    14. F. R. Beierlein, G. G. Kneale, T. Clark, Predicting the Effects of Basepair Mutations in DNA-Protein Complexes by Thermodynamic Integration. J. Biophys., 2011. 101: p. 1130-1138.
    15. S. Genheden, I. Nilsson, U. Ryde, Binding Affinities of Factor Xa Inhibitors Estimated by Thermodynamic Integration and Mm/Gbsa. J. Chem. Inf. Model., 2011. 51: p. 947-958.
    16. D. L Mobley, C. I. Bayly, M. D. Cooper, M. R. Shirts, K. A. Dill, Small Molecule Hydration Free Energies in Explicit Solvent: An Extensive Test of Fixed-Charge Atomistic Simulations. J. Chem. Theory Comput., 2009. 5: p. 350-358.
    17. T. Steinbrecher, I. Joung, D. A. Case, Soft-Core Potentials in Thermodynamic Integration: Comparing One- and Two-Step Transformations. J. Comput. Chem., 2011. 32: p. 3253-3263.
    18. S. A. Martins, S. F. Sousa, Comparative Assessment of Computational Methods for the Determination of Solvation Free Energies in Alcohol-Based Molecules. J. Comput. Chem., 2013. 34: p. 1354-1362.
    19. J. Westbrook, H. M. Berman, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, Ilya N. Shindyalov, P. E. Bourne, The Protein Data Bank. Nucleic Acids Res., 2000. 28: p. 235-242.
    20. A. Jakalian, D. B. Jack, C. I. Bayly, Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem., 2002. 23: p. 1623-1641.
    21. F. P. Buelens, H. Grubmuller, Linear-Scaling Soft-Core Scheme for Alchemical Free Energy Calculations. J. Comput. Chem., 2012. 33: p. 25-33.
    22. D. A. Case, T. Darden, T. E. Cheatham, C. Simmerling, J. Wang, R. E. Duke, R. Luo, R. C. Walker, W. Zhang, K. M. Merz, B. Roberts, B. Wang, S. Hayik, A. Roitberg, G. Seabra, I. Kolossvary, K. F. Wong, F. Paesani, J. Vanicek, X. Wu, S. R. Brozell, T. Steinbrecher, H. Gohlke, Q Cai, X. Ye, J. Wang, M. -J. Hsieh, G. Cui, D. R. Roe, D. H. Mathews, M. G. Seetin, C. Sagui, V. Babin, T. Luchko, S. Vusarov, A. Kovalenko, P. A. Kollman, Amber 14 Reference Manual. 2014, San Francisco: University of California. 824.
    23. J. A. Izaguirre, D. P. Catarello, J. M. Wozniak, R. D. Skeel, Langevin Stabilization of Molecular Dynamics. J. Chem. Phys., 2001. 114: p. 2090.
    24. J. W. Kaus, L. T. Pierce, R. C. Walker, J. A. McCammon, Improving the Efficiency of Free Energy Calculations in the Amber Molecular Dynamics Package. J. Comput. Theory Chem., 2013. 9: p. 4131-4139.
    25. M. L. Verdonk, J. C. Cole, M.J. Hartshorn, C. W. Murray, R. D. Taylor, Improved Protein-Ligand Docking Using GOLD. PROTEINS: Structure, Function, and Genetics, 2003: p. 609-623.
    26. M. D. Eldridge, C. W. Murray, T. R. Auton, G. V. Paolini, R. P. Mee, Empirical Scoring Functions: I. The Development of a Fast Empirical Scoring Function to Estimate the Binding Affinity of Ligands in Receptor Complexes. J. Comput. Aided Mol. Des., 1997. 11: p. 425-445.
    27. Y. Cheng, W. H. Prusoff, Relationship between the Inhibition Constant (Ki) and the Concentration of Inhibitor Which Causes 50 Per Cent Inhibition (I50) of an Enzymatic Reaction. Biochem. Pharmacol., 1973. 22: p. 3099.
    28. S. Lazareno, N. J. M. Birdsall, Estimation of Competitive Antagonist Affinity from Functional Inhibition Curves Using the Gaddum, Schild and Cheng-Prusoff Equations. J. Br. pharmacol., 1993. 109: p. 1110-1119.
    29. J. Michel, N. Foloppe, J. W. Essex, Rigorous Free Energy Calculations in Structure-Based Drug Design. Molecular Informatics, 2010. 29: p. 570-578.
    30. K. W. Wu, P. C. Chen, J. Wang, Y. C. Sun, Computation of Relative Binding Free Energy for an Inhibitor and Its Analogs Binding with Erk Kinase Using Thermodynamic Integration MD Simulation. J. Comput. Aided Mol. Des., 2012. 26: p. 1159-1169.
    31. D. R. Roe, T. E. Cheatham, PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data. J. Chem. Theory Comput., 2013. 9: p. 3084-3095.
    32. G. Jones, P. Willett, R. C. Glen, Molecular Recognition of Receptor Sites Using a Genetic Algorithm with a Description of Desolvation. J. Mol. Biol., 1995. 245: p. 45-53.
    33. R. Abel, T. Young, R. Farid, B. J. Berne, R. A. Friesner, Role of the Active-Site Solvent in the Thermodynamics of Factor Xa Ligand Binding. J. Am. Chem. Soc., 2008. 130: p. 2817-2831.

    無法下載圖示 本全文未授權公開
    QR CODE