簡易檢索 / 詳目顯示

研究生: 韓學中
Han, Hsueh-Chung
論文名稱: 智慧型伸縮電動車之結構設計與實作驗證
Structural Design and Experimental Assessment of Intelligent Flexible-Size Electric Vehicles
指導教授: 洪翊軒
Hung, Yi-Hsuan
學位類別: 碩士
Master
系所名稱: 工業教育學系
Department of Industrial Education
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 73
中文關鍵詞: 伸縮機構可變軸距燃料消耗率
英文關鍵詞: Telescopic mechanism, wheelbase, fuel consumption rate
DOI URL: https://doi.org/10.6345/NTNU202202403
論文種類: 學術論文
相關次數: 點閱:107下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在探討使用車身重量及車體大小變化,對電動車能源損耗多寡之影響,透過智慧型伸縮電動車實車製作測試,並套入各種實際使用情境案例作為模擬,探討其節能效益。
    除了實車裝置製作與測試外,更進行了將智慧型伸縮電動車理論分析與實車裝置製作實現。從伸縮機構發想、底盤伸縮機構、車內座椅伸縮機構、擋風玻璃伸縮機構、車身伸縮機構及伸縮機構之最適化分析,一直到實車底盤製作、底盤製作與機構測試、實車車身與主要配件製作、車內座椅製作與機構測試、擋風玻璃製作與機構測試、車身製作與機構測試及外型設計與製作皆有電腦三維建模與最適化分析,最後以實車方式驗證展示。
    結果顯示,智慧型伸縮電動車在車身大小作伸縮作動時,亦改變了電池配置,而電池少了重量就輕了,而智慧型伸縮電動車電池配置展開到最大時,裝載9組電池,當車身縮小至最小時,同時移除五組無需使用之電池,此時車身重量由1220 kg減少至970 kg。透過ECE-40之行車型態進行能耗測試,由實驗結果得出,前投影面積每(m2)將增加0.38 %能耗,車身重量每10 kg增加0.36 %的能耗。

    The experiment is carried out by means of intelligent flexible-size electric vehicle and the actual use case can be used as a simulation to discuss its energy efficiency.
    In addition to the actual vehicle production and testing, but also the wisdom of the telescopic electric vehicle theoretical analysis and real vehicle production in the paper clearly explain the show, exterior design and production are computer 3D modeling and optimization analysis, and finally to verify the way to show real car.
    When the car body is reduced to the minimum, while removing the five groups without the use of the battery, then the body weight will be greatly reduced. Through the ECE-40 of the road energy consumption test, the experimental results show that the front projection area per (m2) will increase 0.38 % energy consumption, body weight per 10 ( kg) increased 0.36 % energy consumption.

    摘要 i Abstract ii 目 次 iii 表 次 vi 圖 次 vii 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 4 1.4 研究方法 5 1.5 論文架構 7 1.6 文獻回顧 7 第二章 理論與設計 14 2.1 伸縮機構發想 14 2.1.1車身伸縮機構 16 2.1.2底盤伸縮機構 17 2.1.3車內座椅伸縮機構 19 2.1.4擋風玻璃伸縮機構 20 2.2伸縮機構之最適化分析 22 2.3車身尺寸設定計算 24 2.3.1車身縮閉時車長 24 2.3.2車身縮閉時車寬 25 2.3.3車身展開時車長 26 2.3.4車身展開時車寬 27 2.3.5車高 28 第三章 實車裝置製作與測試 30 3.1 實車底盤製作 31 3.2 實車車身與主要配件製作 43 3.2.1車內座椅製作與機構測試 43 3.2.2擋風玻璃製作與機構測試 49 3.2.3 車身伸縮控制電路設計與製作 54 第四章 實驗結果與討論 64 4.1伸縮機構之結構測試 64 4.1.1伸縮機構之結構載重測試 64 4.1.2伸縮機構之結構作動測試 65 4.1.3伸縮機構之結構可行性評估 66 4.2智慧型伸縮電動車實車能耗測試 67 4.2.1 ECE-40行車型態能耗模擬 67 4.2.2能耗實驗結果分析 68 第五章 結論與未來工作 70 5.1 結論 70 5.2未來工作 71 參考文獻 72

    [1] EV-SALES. (2017) Tracking down plug-in car sales all over the world. U. S.: The Content on EV Sales is owned by us or our suppliers and may only be used with our permission. Available at:ev-sales.blogspot.tw Accessed 23 April 2017.
    [2] Cheah, L. W., Bandivadekar, A. P., Bodek, K. M., Kasseris, E. P., & Heywood, J. B. (2008). The trade-off between automobile acceleration performance, weight, and fuel consumption. SAE International Journal of Fuels and Lubricants, 1(2008-01-1524), 772-778
    [3] Nakaguchi, H. (1968). An experimental study on aerodynamic drag of rectangular cylinders. Trans. Japan Aeronautical and Space Science, 16, 2-5.
    [4] Coutermarsh, B. (2007). Velocity effect of vehicle rolling resistance in sand. Journal of Terramechanics, 44(4), 275-295.
    [5] Lewis-Evans, B., & Charlton, S. G. (2006). Explicit and implicit processes in behavioural adaptation to road width. Accident Analysis & Prevention, 38(3), 610-615.
    [6] Lin Jing hui. (2005). China. Patent CN2894780Y. Telescopic body length of the toy car.
    [7] Sun Zhan bow, Wang Zhi Hui, Zheng Bao Ming, Zhang Li Yun. (2011). China. Patent CN103085704B. Multifunction stretch propelled car.
    [8] Lin Jia Chuan. (2006). Republic of China. Patent gn-M310854. Variable overall length personal mobility vehicle.
    [9] Chris P. Theodore, Christopher David Batty, Nicholas John Daiber.(2017). U.S. Patent No. US9440687 B2. Folding vehicle.
    [10] Johannes Huennekens, Samuel Ellis, Greg Foletta, Lauri Mikael Ohra-aho. (2015). U.S. Patent No. US 9211932 B1. Self-propelled unicycle engagable with vehicle.
    [11] Masamoto Ito, Martin Petersson.( 2017). U.S. Patent No. US20170043680 A1. Vehicle body structure.
    [12] Pao, B. (2000). U.S. Patent No. 6142699. Washington, DC: U.S. Patent and Trademark Office.
    [13] Beck, R., Frick, P., Stepanov, R., & Sokoloff, D. (2012). Recognizing magnetic structures by present and future radio telescopes with Faraday rotation measure synthesis. Astronomy & Astrophysics, 544, A115.
    [14] Weckenmann, A., Knauer, M., & Killmaier, T. (2001). Uncertainty of coordinate measurements on sheet-metal parts in the automotive industry. Journal of materials processing technology, 115(1), 10-15.
    [15] Tseng, C. Y. (2009). A Study of Legal Affairs of Road Barriers Removal.
    [16] Bhise, V. D. (2011). Ergonomics in the automotive design process. CRC Press.
    [17] Powell, J. (1993). CO2 laser cutting (Vol. 214). London, UK: Springer-Verlag.
    [18] Deguchi, H. (1982). U.S. Patent No. 4354374. Washington, DC: U.S. Patent and Trademark Office.
    [19] Daryan, A. S., & Yahyai, M. (2009). Behavior of bolted top-seat angle connections in fire. Journal of Constructional Steel Research, 65(3), 532-541.
    [20] Dul, J., Bruder, R., Buckle, P., Carayon, P., Falzon, P., Marras, W. S., ... & van der Doelen, B. (2012). A strategy for human factors/ergonomics: developing the discipline and profession. Ergonomics, 55(4), 377-394.
    [21] Griswold, L., Allen, D. L., Ptak, K., & Laskowski, M. (2008). U.S. Patent No. 7377584. Washington, DC: U.S. Patent and Trademark Office.
    [22] Staab, G. H., & Gilat, A. (1995). High strain rate response of angle-ply glass/epoxy laminates. Journal of Composite Materials, 29(10), 1309-1314.
    [23] Geier v. American Honda Motor Co., 529 U.S. 861, 120 S. Ct. 1913, 146 L. Ed. 2d 924 (2000).
    [24] Code, E. C. B. (2016). Bureau of Energy Efficiency. Ministry of Power, Government of Taiwan.

    無法下載圖示 本全文未授權公開
    QR CODE