研究生: |
歐詠芝 Yung Chih Ou |
---|---|
論文名稱: |
不同資料遺失樣態對於差異試題功能偵測效果之影響 Impact of Missing Data Pattern on the Detection of Differential Item Functioning |
指導教授: |
陳柏熹
Chen, Po-Hsi |
學位類別: |
碩士 Master |
系所名稱: |
教育心理與輔導學系 Department of Educational Psychology and Counseling |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 76 |
中文關鍵詞: | 遺失值 、差異試題功能 、單一插補 、純化 、Mantel-Haenszel統計 、Lord卡方考驗 |
英文關鍵詞: | missing data, DIF, single imputation, purification, Mantel-Haenszel statistic, Lord’s chi-square |
論文種類: | 學術論文 |
相關次數: | 點閱:191 下載:9 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究旨在探討不同遺失樣態下偵測差異試題功能(DIF)的影響,其中的遺失樣態是指不同的遺失機制與遺失比率。因此,以模擬研究的方式來探究四種遺失機制(MCAR遺失與三種不同形式的MAR遺失)與三種遺失比率(0%、10%、30 %)下,並操弄三種DIF試題比率(0%、10%、20%)與三種DIF程度(0、0.5、0.8),進一步討論兩種遺失值處理方式(有無進行單一插補)與四種DIF偵測方法(有無加入純化程序的Mantel-Haenszel statistic與Lord’s chi-square)對於DIF偵測效果(型一錯誤率與正確偵測率)的影響。
研究結果顯示,遺失樣態對於DIF偵測效果有影響,但僅在以MH法進行DIF分析的情況下。經單一插補處理遺失值後,多數DIF試題的正確偵測率與型一誤判率會增加。無論是以MH法或Lord法作為DIF偵測方法,加入純化程序都能有效改善DIF偵測效果。
Differential item functioning (DIF) is an area of continuous interest within the community of measurement researchers. Recently, there is some interest in the detection of DIF items when missing data are present in the test. Under such circumstances, different treatments on the missing data may have different effects on the detection of DIF items. This article describes the results of a simulation study to investigate the impact of missing data pattern on the detection of uniformly DIF items. In the study, missing data pattern is defined by means of various missing mechanisms and missing rates. The purpose of this study is to investigate how two missing data treatments (utilizing single imputation or not) interact with four methods of DIF detection (Mantel-Haenszel statistic and Lord’s chi-square test with and without purification) under four missing mechanisms (MCAR and three versions of MAR) and three missing rates (0%, 10%, 30%) with three DIF magnitude (0, 0.5, 0.8) by means of examining the type I error rates as well as the statistical power of DIF detection.
Results show that missing data pattern has impact on the detection of DIF, but only with respect to MH. After missing data treatment by SI, most type I error rates and statistical power increase. With respect to both MH and Lord’s approaches, purification procedure could improve on their DIF detection performances.
中文部分
鄒慧英、江培銘(2012)。插補法在檢測試題差異功能的效果。測驗學刊, 59(1), 1-32.
英文部分
Afifi, A. A., & Elashoff, R. M. (1966). Missing observations in multivariate statistics I. Review of the literature. Journal of the American Statistical Association, 61(315), 595-604.
Allison, P. D. (2000). Multiple imputation for missing data: A cautionary tale. Sociological Methods and Research, 28, 301–309.
Camilli, G., (1993). The case against item bias techniques based on internal criteria: Do item bias procedures obscure test fairness issues? The use of differential item functioning statistics: A discussion of current practice and future implications. In P. W. Holland, & H. Wainer (Eds.), Differential item functioning (pp. 397-413). New Jersey: Lawrence Erlbaum Associates, Inc.
Candell, G. L., & Drasgow, F. (1988). An iterative procedure for linking metrics and assessing item bias in item response theory. Applied psychological measurement, 12(3), 253-260.
Clauser, B. E., & Mazor, K. M. (1998). Using statistical procedures to identify differentially functioning test items. Educational Measurement: Issues and Practice, 17(1), 31-44.
Clauser, B., Mazor, K., & Hambleton, R. K. (1993). The effects of purification of matching criterion on the identification of DIF using the Mantel-Haenszel procedure. Applied Measurement in Education, 6(4), 269-279.
Cronbach, L. J. (1975). Five decades of public controversy over mental testing. American Psychologist, 30(1), 1-14.
Dorans, N. J., & Holland, P. W. (1993). DIF detection and description: Mantel-Haenszel and standardization. In An earlier version of this chapter was presented at ETS/AFHRL Conference," Differential Item Functioning: Theory and Practice," Educational Testing Service, Princeton, NJ, Oct 6, 1989.. Lawrence Erlbaum Associates, Inc.
Fidalgo, A. M., Mellenbergh, G. J., & Muñiz, J. (2000). Effects of amount of DIF, test length, and purification type on robustness and power of Mantel-Haenszel procedures. Methods of Psychological Research Online, 5(3), 43-53.
Finch, W. H. (2011). The Impact of Missing Data on the Detection of Nonuniform Differential Item Functioning. Educational and Psychological Measurement, 71(4), 663-683.
Finch, W. H., & French, B. F. (2007). Detection of Crossing Differential Item Functioning A Comparison of Four Methods. Educational and psychological measurement, 67(4), 565-582.
French, B. F., & Maller, S. J. (2007). Iterative purification and effect size use with logistic regression for differential item functioning detection. Educational and Psychological Measurement, 67(3), 373-393.
Haney, W. (1981). Validity, vaudeville, and values: A short history of social concerns over standardized testing. American Psychologist, 36(10), 1021-34.
Hartley, H. O. (1956). A plan for programming analysis of variance for general purpose computers. Biometrics, 12(2), 110-122.
Hartley, H. O., & Hocking, R. R. (1971). The analysis of incomplete data. Biometrics, 783-823.
Holland, P. W., & Thayer, D. T. (1988). Differential item performance and the Mantel-Haenszel procedure. Test validity, 129-145.
Little, R. J., & Rubin, D. B. (1987). Statistical analysis with missing data (Vol. 539). New York: Wiley.
Lord, F. M. (1980). Applications of item response theory to practical testing problems. Routledge.
Magis, D., Be ́land, S., Tuerlinckx, F., & De Boeck, P. (2010). A general framework and an R package for the detection of dichotomous differential item functioning. Behavior Research Methods, 42, 847-862.
Mantel, N., & Haenszel, W. (2004). Statistical aspects of the analysis of data from retrospective studies of disease. The Challenge of Epidemiology: Issues and Selected Readings, 1(1), 533-553.
Miller, M. D., & Oshima, T. C. (1992). Effect of Sample Size, Number of Biased Items, and Magnitude of Bias on a Two-Stage Item Bias Estimation Method. Applied Psychological Measurement, 16(4), 381-88.
Murphy, K. R., & Davidshofer, C. O. (1991). Psychological testing. Prentice-Hall.
Navas-Ara, M. J., & Gómez-Benito, J. (2002). Effects of ability scale purification on the identification of DIF. European Journal of Psychological Assessment, 18(1), 9-15.
Peugh, J. L., & Enders, C. K. (2004). Missing data in educational research: A review of reporting practices and suggestions for improvement. Review of educational research, 74(4), 525-556.
Potenza, M. T., & Dorans, N. J. (1995). DIF assessment for polytomously scored items: A framework for classification and evaluation. Applied Psychological Measurement, 19(1), 23-37.
Raju, N. S. (1990). Determining the significance of estimated signed and unsigned areas between two item response functions. Applied Psychological Measurement, 14(2), 197-207.
Robitzsch, A., & Rupp, A. A. (2009). Impact of Missing Data on the Detection of Differential Item Functioning The Case of Mantel-Haenszel and Logistic Regression Analysis. Educational and Psychological Measurement, 69(1), 18-34.
Rogers, H. J., & Swaminathan, H. (1993). A comparison of logistic regression and Mantel-Haenszel procedures for detecting differential item functioning. Applied Psychological Measurement, 17(2), 105-116.
Roussos, L. A., & Stout, W. F. (1996). Simulation Studies of the Effects of Small Sample Size and Studied Item Parameters on SIBTEST and Mantel‐Haenszel Type I Error Performance. Journal of Educational Measurement, 33(2), 215-230.
Rubin, D. B. (1972). A non-iterative algorithm for least squares estimation of missing values in any analysis of variance design. Applied statistics, 136-141.
Rubin, D. B. (1976). Inference and missing data. Biometrika, 63(3), 581-592.
Rubin, D. B. (1977). Formalizing subjective notions about the effect of nonrespondents in sample surveys. Journal of the American Statistical Association, 72(359), 538-543.
Rubin, D.B. (1987). Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons, New York.
Rubin, D. B. (2009). Multiple imputation for nonresponse in surveys (Vol. 307). Wiley.
Rudner, L. M., Getson, P. R., & Knight, D. L. (1980). A Monte Carlo comparison of seven biased item detection techniques. Journal of Educational Measurement, 17(1), 1-10.
Schafer, J. L., & Graham, J. W. (2002). Missing data: Our view of the state of the art. Psychological methods, 7(2), 147-177.
Shih, C. L., & Wang, W. C. (2009). Differential item functioning detection using the multiple indicators, multiple causes method with a pure short anchor. Applied Psychological Measurement, 33(3), 184-199.
Sinharay, S., Stern, H. S., & Russell, D. (2001). The use of multiple imputation for the analysis of missing data. Psychological methods, 6(4), 317.
Swaminathan, H., & Rogers, H. J. (1990). Detecting differential item functioning using logistic regression procedures. Journal of Educational measurement, 27(4), 361-370.
Thissen, D. (1993). Detection of Differential Item Functioning Using the Parameters of Item Response Models. Differential Item Functioning, 67.
van Der Flier, H., Mellenbergh, G. J., Adèr, H. J., & Wijn, M. (1984). An Iterative Item Bias Detection Method. Journal of Educational Measurement, 131-145.
van Buuren, S., & Oudshoorn, K. (1999). Flexible multivariate imputation by MICE.
Wang, W. C., & Su, Y. H. (2004). Effects of average signed area between two item characteristic curves and test purification procedures on the DIF detection via the Mantel-Haenszel method. Applied Measurement in Education, 17(2), 113-144.
Whitmore, M. L., & Schumacker, R. E. (1999). A comparison of logistic regression and analysis of variance differential item functioning detection methods. Educational and Psychological Measurement, 59(6), 910-927.
Zwick, R., Thayer, D. T., & Lewis, C. (1999). An Empirical Bayes Approach to Mantel‐Haenszel DIF Analysis. Journal of Ed