研究生: |
石登元 Shih, Teng-Yuan |
---|---|
論文名稱: |
HIPIMS鍍製HfO2氧化層之MIM電容的鐵電量測 Ferroelectric of HfO2 dielectric layer by high power impulse magnetron sputtering for MIM capacitors |
指導教授: |
劉傳璽
Liu, Chuan-Hsi 鄭慶民 Cheng, Ching-Min 阮弼群 Juan, Pi-Chun |
學位類別: |
碩士 Master |
系所名稱: |
機電工程學系 Department of Mechatronic Engineering |
論文出版年: | 2016 |
畢業學年度: | 104 |
語文別: | 中文 |
論文頁數: | 99 |
中文關鍵詞: | 高功率脈衝磁控濺鍍 、鐵電材料 、二氧化铪 |
英文關鍵詞: | HIPIMS, Ferroelectric material, HfO2 |
DOI URL: | https://doi.org/10.6345/NTNU202204564 |
論文種類: | 學術論文 |
相關次數: | 點閱:167 下載:15 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鐵電材料是目前熱門的研究目標之一,現今科技的發展使得我們對於電子元件的尺寸追求越來越小。然而傳統鐵電材料所鍍製的薄膜厚度大約幾百奈米,薄膜的漏電也非常大,從而影響鐵電材料在記憶體上的應用。所以科學家們開始尋找新型的鐵電材料,並且發現HfO2和ZrO2等材料,有機會取代傳統鐵電材料。其中HfO2更是許多科學家所看好的新型鐵電材料選擇,並嘗試使用不同的鍍製方式來探討HfO2薄膜所能展現出的鐵電特性。
在本研究中,我們將利用高功率脈衝磁控濺鍍 (High Power Impulse Magnetron Sputtering, HIPIMS)來製備HfO2鐵電層。試片的基本結構上為,在P-type矽基板上使用DC sputter鍍製下電極的Mo,再來是鐵電層HfO¬2,最後則是上電極的Al。實驗總共會有三組Sample的變化。Sample 1為在HfO2層中摻雜Zr形成HfO2:Zr薄膜。Sample 2則是在HfO2層上鍍製一層Zr層。Sample 3是在HfO2的上下方分別鍍製TiN層以及ZrN層兩種結構變化。試片完成後,做鐵電性的量測,並配合物性測量作分析。最後,本研究在三組Sample中皆有發現極化現象。在Sample 1中得知HIPIMS鍍製時,氧氣通量在10 sccm表現最佳,並且RTA在850℃時無鐵電性表現。在Sample 2中得知Zr摻雜在HfO2的量不是越多越好,在TEM中看出HIPIMS鍍製時Hf對Mo層造成損害的情況,這情況在Sample 3的結構中能有效的改善。而Sample 3試片的鐵電性在三組中是表現最好的,TiN與ZrN在RTA溫度上的趨勢表現相反,推測是因為兩者在應力結構上表現不同。
關鍵字: 高功率脈衝磁控濺鍍、鐵電材料、二氧化铪
Ferroelectric material is now one of the popular research objectives. Due to the current development of technology, the size of electronic components become smaller and smaller. However, the film thickness of the conventional ferroelectric material is about few hundred nanometers and the current leakage is large, thus effecting the application of ferroelectric material used in memory devices. Therefore, scientists began looking for new ferroelectric materials such as HfO2, ZrO2 and other materials with the opportunity to replace the conventional ferroelectric materials. HfO2 is the choice for many researchers who try to use different deposition methods to find out the ferroelectric properties in HfO2 films.
In this research, we used High Power Impulse Magnetron Sputtering (HIPIMS) for the deposition of HfO2 ferroelectric layers. The basic structure of the sample was Al/HfO2/Mo/p-Si which Al and Mo depositing by DC sputter. In Group 1, we doped Zr into HfO2 to form HfO2:Zr layer. In Group 2, we deposited a Zr layer above the HfO2 layer. In Group 3, we formed two different structures in which TiN and ZrN were separately deposited above and at the below HfO2. Then measurements of ferroelectric and physical properties were performed for all the samples.
Keywords: HIPIMS, Ferroelectric material, HfO2
[1] D. Stroobandt, "Interconnect Research Influenced", IEEE Solid-State Circuits Magazine, Vol 2, pp. 21-27 (2010).
[2] 工研院產業經濟與趨勢研究中心及資策會資訊市場情報中心,2015年台灣重要產業技術發展藍圖I,工研院IEK,2008。
[3] 劉傳璽,陳進來,第三版,半導體物理元件與製程-理論與實務,五南文化出版社,2006。
[4] J. Valasek, Phys. Rev. 15, 537 (1920); 17, 475-481 (1920). Piezoelectric and allied phenomena in Rochelle salt.
[5] J. F. Shackelford (編譯:蔡希杰 博士) (2008年),材料科學(第六版)
[6] H.S. Choi, K.S. Seol, D.Y. Kim, J.S. Kwak, C.S. Son, and I.H. Choi, "Thermal treatment effects on interfacial layer formation between ZrO2 thin films and Si substrates", Vacuum, Vol. 80, pp. 310–316 (2005).
[7] S. Abermann, O. Bethge, C. Henkel, and E. Betagnolli, "Atomic layer deposition of ZrO2/La2O3 high-k dielectrics on germanium reaching 0.5 nm equivalent oxide thickness", Journal of Applied Physics, Vol. 94, pp. 262904-1-262904-3 (2009).
[8] L. Kang, B.H. Lee, W.J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, "Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric", IEEE Electron Device Letters, Vol. 21, pp.181-183 (2000).
[9] J. Robertson, "Electronic structure and band offsets of high-dielectric-constant gate oxides", Journal of the Electrochemical Society, Vol. 114, pp. 266-274 (1967).
[10] G.D. Wilk, R.M. Wallace, and J.M. Anthony, "High-gate dielectrics: Current status and materials properties considerations", Journal of Applied Physics, Vol. 89, pp. 5243-5275 (2001).
[11] H.X. Xu, J.P. Xu, C.X. Li, and P.T. Lai, "Electrical properties of Ge metal-oxide-semiconductor capacitors with La2O3 gate dielectric annealed in different ambient", Thin Solid Films, Vol. 518, pp. 6962-6965 (2010).
[12] H.S. Choi, K.S. Seol, D.Y. Kim, J.S. Kwak, C.S. Son, and I.H. Choi, "Thermal treatment effects on interfacial layer formation between ZrO2 thin films and Si substrates", Vacuum, Vol. 80, pp. 310–316 (2005).
[13] S. Pan, S.J. Ding, Y. Huang, Y.J. Huang, D.W. Zhang, L.K. Wang, and R. Liu, "High-temperature conduction behaviors of HfO2/TaN-based metal-insulator-metal capacitors", Journal of Applied Physics, Vol. 102, pp. 073706-1-073706-5 (2007).
[14] J. Robertson, "Band offsets of wide band gap oxides and implications for future electronic devices", Journal of Vacuum Science & Technology B, Vol. 18, pp. 1785-1791 (2000).
[15] P.C. Juan, J.H. Lu, and M.W. Lu, "Improvement on reliability properties of metal-ferroelectric (BiFeO3)-insulator (HfO2)-semiconductor structures fabricated by oxygen-incorporated magnetron sputtering", Journal of the Electrochemical Society, Vol. 155, pp. 991-994 (2008).
[16] K.S. Min, C. Park, C.Y. Kang, C.S. Park, B.J. Park, Y.W. Kim, B.H. Lee, J. C. Lee, G. Bersuker, P. Kirsch, R. Jammy, and G.Y. Yeom, "Improvement of metal gate/high-k dielectric CMOSFETs characteristics by atomic layer etching of high-k gate dielectric", Solid-State Electronics, Vol. 82, pp. 82-85 (2013).
[17] C.H. An, M.S. Lee, J.Y. Choi, and H. Kim, "Change of the trap energy levels of atomic layer deposited HfLaOx films with different La concentration", Applied Physics Letters, Vol. 94, pp. 262901-1-262901-3 (2009).
[18] C.H. Liu, H.W. Chen, S.Y. Chen, H.S. Huang, and L.W. Cheng, "Current conduction of 0.72 nm equivalent-oxide-thickness LaO/HfO2 stacked gate dielectrics", Applied Physics Letters, Vol. 95, pp. 012103-1-012103-3 (2009).
[19] K. Yamamoto, S. Hayashi, M. Kubota, and M. Niwa, "Effect of Hf metal predepositon on the properties of sputtered HfO2/Hf stacked gate dielectrics", Journal of Applied Physics, Vol. 81, pp. 2053-2055 (2002).
[20] M. Wittmer, J. Noser, and H. Melchior, "Oxidation Kinetics of TiN thin films", Journal of Applied Physics, Vol. 52, pp. 6659-6664 (1981).
[21] R.K. Waits, "Edison’s vacuum coating patents", Journal of Vacuum Science & Technology A, Vol. 19, No. 4, pp. 1666-1673 (2001).
[22] C. Christou and Z.H. Barber, "Ionization of sputtered material in a planar magnetron discharge", Journal of Vacuum Science & Technology A, Vol. 18, No. 6, pp. 2897-2907 (2000).
[23] Y. Pauleau, "Generation and evolution of residual stresses in physical vapour-deposited thin films", Vacuum, Vol. 61, No. 2, pp. 175-181 (2001).
[24] R. Koch, "The intrinsic stress of polycrystalline and epitaxial thin metal films", Journal of Physics: Condensed Matter, Vol. 6, No. 45, pp. 9519-9550 (1994).
[25] C.A. Davis, "A simple model for the formation of compressive stress in thin films by ion bombardment", Thin Solid Films, Vol. 226, No. 1, pp. 30-34 (1993).
[26] W. Henry, "Intrinsic stress in sputter-deposited thin films", Critical Reviews in Solid State and Material Sciences, Vol. 17, No. 6, pp. 547-596 (1992).
[27] Y. Lifshitz, S.R. Kasi, and J.W. Rabalais, "Subplantation model for film growth from hyperthermal species: Application to diamond", Physical Review Letters, Vol. 62, No. 11, pp. 1290-1293 (1989).
[28] G.C.A.M. Janssen and J.D. Kamminga, "Stress in hard metal films", Applied Physics Letters, Vol. 85, No. 15, pp. 3086-3088(2004).
[29] V. Kouznetsov, K. Macák, J.M. Schneider, U. Helmersson, and I. Petrov, "A novel pulsed magnetron sputter technique utilizing very high target power densities", Surface and Coatings Technology, Vol. 85, No. 15, pp. 290-293 (1999).
[30] A.P. Ehiasarian, R. New, W.D. Münz, L. Hultman, U. Helmersson, and V. Kouznetsov, "Influence of high power densities on the composition of pulsed magnetron plasmas", Vacuum, Vol. 65, No. 2, pp. 147-154 (2002).
[31] J. Alami and P. Thesis, "Plasma Characterization & Thin Film Growth and Analysis in Highly Ionized Magnetron Sputtering", Linkoping University (2005).
[32] A. Anders, "A structure zone diagram including plasma-based deposition and ion etching", Thin Solid Films, Vol. 518, No. 15, pp. 4087-4090 (2010).
[33] K. Sarakinos, J. Alami, and S. Konstantinidis, "High power pulsed magnetron sputtering: A review on scientific and engineering state of the art", Surface and Coatings Technology, Vol. 204, No. 11, pp. 1661-1684 (2010).
[34] H. Takikawa and H. Tanoue, "Review of cathodic arc deposition for preparing droplet-free thin films", Plasma Science, IEEE Transactions on, Vol. 35, No. 4, pp. 992-999 (2007).
[35] S. Schmidt, Z. Czigány, G. Greczynski, J. Jensen, and L. Hultman, "Ion mass spectrometry investigations of the discharge during reactive high power pulsed and direct current magnetron sputtering of carbon in Ar and Ar/ N2", Journal of Applied Physics, Vol. 112, No. 1, pp. 013305-1-013305-11 (2012).
[36] D.J. Christie, F. Tomasel, W.D. Sproul, and D.C. Carter, "Power supply with arc handling for high peak power magnetron sputtering", Journal of Vacuum Science & Technology A, Vol. 22, No. 4, pp. 1415-1419 (2004).
[37] S. Konstantinidis, J.P. Dauchot, M. Ganciu, A. Ricard, and M. Hecq, "Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges", Journal of Applied Physics, Vol. 99, pp. 013307-1-013307-5 (2006).
[38] J. Alami, K. Sarakinos, F. Uslu, and M. Wuttig, "On the relationship between the peak target current and the morphology of chromium nitride thin films deposited by reactive high power pulsed magnetron sputtering", Journal of Physics D: Applied Physics, Vol. 42, No. 1, pp. 015304-1-015304-7 (2009).
[39] D.J. Christie, "Target material pathways model for high power pulsed magnetron sputtering", Journal of Vacuum Science & Technology A, Vol. 23, No. 2, pp. 330-335 (2005).
[40] H.J. Kim, M.H. Park, Y.J. Kim, Y.H. Lee, W. Jeon, T. Gwon, T. Moon, K.D. Kim, and C.S. Hwang, "Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer", Applied Physics Letters, Vol. 105, pp. 192903-1-192903-5 (2014).
[41] T. Olsen, U. Schröder, S. Müller, A. Krause, D. Martin, A. Singh, J. Müller, M. Geidel, and T. Mikolajick, "Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties", Applied Physics Letters, Vol. 101, pp. 082905 (2012).
[42] M.K. Park, H.J. Kim, Y.J. Kim, W. Lee, T. Moon, C.S. Hwang, "Evolution of phases and ferroelectric properties of thin Hf0.5Zr00.5O2 films according to the thickness and annealing temperature", Applied Physics Letters, Vol. 102, pp. 242905 (2013).
[43] T. Shimizu, T. Yokouchi, T. Oikawa, T. Shiraishi, T. Kiguchi, A. Akama, Toyohiko J. Konno, A. Gruverman, and H. Funakubo, "Contribution of oxygen vacancies to the ferroelectric behavior of Hf0.5Zr0.5O2 thin films", Applied Physics Letters, Vol. 106, pp. 112904 (2015).
[44] M.H. Park, H.J. Kim, Y.J. Kim, Woongkyu Lee, H.K. Kim, and C.S. Hwang, "Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes", Applied Physics Letters, Vol. 102, pp. 112914-1-112914-4 (2013).