簡易檢索 / 詳目顯示

研究生: 石登元
Shih, Teng-Yuan
論文名稱: HIPIMS鍍製HfO2氧化層之MIM電容的鐵電量測
Ferroelectric of HfO2 dielectric layer by high power impulse magnetron sputtering for MIM capacitors
指導教授: 劉傳璽
Liu, Chuan-Hsi
鄭慶民
Cheng, Ching-Min
阮弼群
Juan, Pi-Chun
學位類別: 碩士
Master
系所名稱: 機電工程學系
Department of Mechatronic Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 99
中文關鍵詞: 高功率脈衝磁控濺鍍鐵電材料二氧化铪
英文關鍵詞: HIPIMS, Ferroelectric material, HfO2
DOI URL: https://doi.org/10.6345/NTNU202204564
論文種類: 學術論文
相關次數: 點閱:167下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鐵電材料是目前熱門的研究目標之一,現今科技的發展使得我們對於電子元件的尺寸追求越來越小。然而傳統鐵電材料所鍍製的薄膜厚度大約幾百奈米,薄膜的漏電也非常大,從而影響鐵電材料在記憶體上的應用。所以科學家們開始尋找新型的鐵電材料,並且發現HfO2和ZrO2等材料,有機會取代傳統鐵電材料。其中HfO2更是許多科學家所看好的新型鐵電材料選擇,並嘗試使用不同的鍍製方式來探討HfO2薄膜所能展現出的鐵電特性。
    在本研究中,我們將利用高功率脈衝磁控濺鍍 (High Power Impulse Magnetron Sputtering, HIPIMS)來製備HfO2鐵電層。試片的基本結構上為,在P-type矽基板上使用DC sputter鍍製下電極的Mo,再來是鐵電層HfO¬2,最後則是上電極的Al。實驗總共會有三組Sample的變化。Sample 1為在HfO2層中摻雜Zr形成HfO2:Zr薄膜。Sample 2則是在HfO2層上鍍製一層Zr層。Sample 3是在HfO2的上下方分別鍍製TiN層以及ZrN層兩種結構變化。試片完成後,做鐵電性的量測,並配合物性測量作分析。最後,本研究在三組Sample中皆有發現極化現象。在Sample 1中得知HIPIMS鍍製時,氧氣通量在10 sccm表現最佳,並且RTA在850℃時無鐵電性表現。在Sample 2中得知Zr摻雜在HfO2的量不是越多越好,在TEM中看出HIPIMS鍍製時Hf對Mo層造成損害的情況,這情況在Sample 3的結構中能有效的改善。而Sample 3試片的鐵電性在三組中是表現最好的,TiN與ZrN在RTA溫度上的趨勢表現相反,推測是因為兩者在應力結構上表現不同。

    關鍵字: 高功率脈衝磁控濺鍍、鐵電材料、二氧化铪

    Ferroelectric material is now one of the popular research objectives. Due to the current development of technology, the size of electronic components become smaller and smaller. However, the film thickness of the conventional ferroelectric material is about few hundred nanometers and the current leakage is large, thus effecting the application of ferroelectric material used in memory devices. Therefore, scientists began looking for new ferroelectric materials such as HfO2, ZrO2 and other materials with the opportunity to replace the conventional ferroelectric materials. HfO2 is the choice for many researchers who try to use different deposition methods to find out the ferroelectric properties in HfO2 films.
    In this research, we used High Power Impulse Magnetron Sputtering (HIPIMS) for the deposition of HfO2 ferroelectric layers. The basic structure of the sample was Al/HfO2/Mo/p-Si which Al and Mo depositing by DC sputter. In Group 1, we doped Zr into HfO2 to form HfO2:Zr layer. In Group 2, we deposited a Zr layer above the HfO2 layer. In Group 3, we formed two different structures in which TiN and ZrN were separately deposited above and at the below HfO2. Then measurements of ferroelectric and physical properties were performed for all the samples.

    Keywords: HIPIMS, Ferroelectric material, HfO2

    第一章 緒論 1 1.1研究背景與動機 1 1.1.1本論文研究架構 2 第二章 文獻探討 3 2.1金氧半場效電晶體 3 2.1.1摩爾定律 4 2.1.2電晶體之結構 6 2.1.3電晶體之操作性能 8 2.2鐵電材料 12 2.2.1傳統鐵電材料 12 2.2.2鐵電材料之結構特性 13 2.2.3鐵電性質 14 2.2.4鐵電之電滯曲線 16 2.3高介電係數材料 18 2.3.1高介電係數氧化層材料 HfO2 21 2.4磁控濺鍍系統 24 2.5高功率脈衝磁控濺鍍系統 26 2.5.1高功率脈衝磁控之電源系統 28 2.5.2脈衝製程 31 2.6影響鐵電薄膜製程的因素 33 2.6.1共鍍元素濃度對鐵電薄膜的影響 34 2.6.2製程時環境氣體對鐵電薄膜的影響 36 2.6.3給予外加應力層時對鐵電薄膜的影響 37 2.7總結 40 第三章 實驗方法 42 3.1實驗原理 42 3.1.1實驗設計與流程 43 3.1.2元件樣本的製程參數 47 3.2實驗儀器介紹 50 3.2.1快速熱退火 (RTA) 50 3.2.2表面輪廓儀 (α-Step) 52 3.3物性量測之實驗儀器 53 3.3.1 X光繞射分析儀 (XRD) 53 3.3.2穿透式電子顯微鏡 (TEM) 55 3.3.3離子減薄機 (Ion Miller) 57 3.3.4原子力顯微鏡 (AFM) 58 3.4電性量測之實驗儀器 59 3.4.1鐵電特性 (Ferroelectric Characteristic) 60 3.5總結 61 第四章 結果與討論 63 4.1鐵電性量測結果 63 4.1.1 HfO2摻雜Zr之鐵電性量測 63 4.1.2 HfO2熱擴散Zr之鐵電性量測 67 4.1.3 HfO2添加TiN和ZrN層之鐵電性量測 73 4.2 XRD量測結果 82 4.2.1 HfO2熱擴散Zr之XRD量測 82 4.2.2 HfO2添加TiN和ZrN層之XRD量測 84 4.3 TEM量測結果 88 4.3.1 HfO2熱擴散Zr之TEM&EDS量測 88 4.3.2 HfO2添加TiN和ZrN層之TEM&EDS量測 89 4.4AFM量測結果 91 4.4.1 HfO2添加TiN和ZrN層之AFM量測 91 第五章 結論與展望 93 5.1結論 93 5.2未來展望 94 參考文獻 95

    [1] D. Stroobandt, "Interconnect Research Influenced", IEEE Solid-State Circuits Magazine, Vol 2, pp. 21-27 (2010).
    [2] 工研院產業經濟與趨勢研究中心及資策會資訊市場情報中心,2015年台灣重要產業技術發展藍圖I,工研院IEK,2008。
    [3] 劉傳璽,陳進來,第三版,半導體物理元件與製程-理論與實務,五南文化出版社,2006。
    [4] J. Valasek, Phys. Rev. 15, 537 (1920); 17, 475-481 (1920). Piezoelectric and allied phenomena in Rochelle salt.
    [5] J. F. Shackelford (編譯:蔡希杰 博士) (2008年),材料科學(第六版)
    [6] H.S. Choi, K.S. Seol, D.Y. Kim, J.S. Kwak, C.S. Son, and I.H. Choi, "Thermal treatment effects on interfacial layer formation between ZrO2 thin films and Si substrates", Vacuum, Vol. 80, pp. 310–316 (2005).
    [7] S. Abermann, O. Bethge, C. Henkel, and E. Betagnolli, "Atomic layer deposition of ZrO2/La2O3 high-k dielectrics on germanium reaching 0.5 nm equivalent oxide thickness", Journal of Applied Physics, Vol. 94, pp. 262904-1-262904-3 (2009).
    [8] L. Kang, B.H. Lee, W.J. Qi, Y. Jeon, R. Nieh, S. Gopalan, K. Onishi, and J. C. Lee, "Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric", IEEE Electron Device Letters, Vol. 21, pp.181-183 (2000).
    [9] J. Robertson, "Electronic structure and band offsets of high-dielectric-constant gate oxides", Journal of the Electrochemical Society, Vol. 114, pp. 266-274 (1967).
    [10] G.D. Wilk, R.M. Wallace, and J.M. Anthony, "High-gate dielectrics: Current status and materials properties considerations", Journal of Applied Physics, Vol. 89, pp. 5243-5275 (2001).
    [11] H.X. Xu, J.P. Xu, C.X. Li, and P.T. Lai, "Electrical properties of Ge metal-oxide-semiconductor capacitors with La2O3 gate dielectric annealed in different ambient", Thin Solid Films, Vol. 518, pp. 6962-6965 (2010).
    [12] H.S. Choi, K.S. Seol, D.Y. Kim, J.S. Kwak, C.S. Son, and I.H. Choi, "Thermal treatment effects on interfacial layer formation between ZrO2 thin films and Si substrates", Vacuum, Vol. 80, pp. 310–316 (2005).
    [13] S. Pan, S.J. Ding, Y. Huang, Y.J. Huang, D.W. Zhang, L.K. Wang, and R. Liu, "High-temperature conduction behaviors of HfO2/TaN-based metal-insulator-metal capacitors", Journal of Applied Physics, Vol. 102, pp. 073706-1-073706-5 (2007).
    [14] J. Robertson, "Band offsets of wide band gap oxides and implications for future electronic devices", Journal of Vacuum Science & Technology B, Vol. 18, pp. 1785-1791 (2000).
    [15] P.C. Juan, J.H. Lu, and M.W. Lu, "Improvement on reliability properties of metal-ferroelectric (BiFeO3)-insulator (HfO2)-semiconductor structures fabricated by oxygen-incorporated magnetron sputtering", Journal of the Electrochemical Society, Vol. 155, pp. 991-994 (2008).
    [16] K.S. Min, C. Park, C.Y. Kang, C.S. Park, B.J. Park, Y.W. Kim, B.H. Lee, J. C. Lee, G. Bersuker, P. Kirsch, R. Jammy, and G.Y. Yeom, "Improvement of metal gate/high-k dielectric CMOSFETs characteristics by atomic layer etching of high-k gate dielectric", Solid-State Electronics, Vol. 82, pp. 82-85 (2013).
    [17] C.H. An, M.S. Lee, J.Y. Choi, and H. Kim, "Change of the trap energy levels of atomic layer deposited HfLaOx films with different La concentration", Applied Physics Letters, Vol. 94, pp. 262901-1-262901-3 (2009).
    [18] C.H. Liu, H.W. Chen, S.Y. Chen, H.S. Huang, and L.W. Cheng, "Current conduction of 0.72 nm equivalent-oxide-thickness LaO/HfO2 stacked gate dielectrics", Applied Physics Letters, Vol. 95, pp. 012103-1-012103-3 (2009).
    [19] K. Yamamoto, S. Hayashi, M. Kubota, and M. Niwa, "Effect of Hf metal predepositon on the properties of sputtered HfO2/Hf stacked gate dielectrics", Journal of Applied Physics, Vol. 81, pp. 2053-2055 (2002).
    [20] M. Wittmer, J. Noser, and H. Melchior, "Oxidation Kinetics of TiN thin films", Journal of Applied Physics, Vol. 52, pp. 6659-6664 (1981).
    [21] R.K. Waits, "Edison’s vacuum coating patents", Journal of Vacuum Science & Technology A, Vol. 19, No. 4, pp. 1666-1673 (2001).
    [22] C. Christou and Z.H. Barber, "Ionization of sputtered material in a planar magnetron discharge", Journal of Vacuum Science & Technology A, Vol. 18, No. 6, pp. 2897-2907 (2000).
    [23] Y. Pauleau, "Generation and evolution of residual stresses in physical vapour-deposited thin films", Vacuum, Vol. 61, No. 2, pp. 175-181 (2001).
    [24] R. Koch, "The intrinsic stress of polycrystalline and epitaxial thin metal films", Journal of Physics: Condensed Matter, Vol. 6, No. 45, pp. 9519-9550 (1994).
    [25] C.A. Davis, "A simple model for the formation of compressive stress in thin films by ion bombardment", Thin Solid Films, Vol. 226, No. 1, pp. 30-34 (1993).
    [26] W. Henry, "Intrinsic stress in sputter-deposited thin films", Critical Reviews in Solid State and Material Sciences, Vol. 17, No. 6, pp. 547-596 (1992).
    [27] Y. Lifshitz, S.R. Kasi, and J.W. Rabalais, "Subplantation model for film growth from hyperthermal species: Application to diamond", Physical Review Letters, Vol. 62, No. 11, pp. 1290-1293 (1989).
    [28] G.C.A.M. Janssen and J.D. Kamminga, "Stress in hard metal films", Applied Physics Letters, Vol. 85, No. 15, pp. 3086-3088(2004).
    [29] V. Kouznetsov, K. Macák, J.M. Schneider, U. Helmersson, and I. Petrov, "A novel pulsed magnetron sputter technique utilizing very high target power densities", Surface and Coatings Technology, Vol. 85, No. 15, pp. 290-293 (1999).
    [30] A.P. Ehiasarian, R. New, W.D. Münz, L. Hultman, U. Helmersson, and V. Kouznetsov, "Influence of high power densities on the composition of pulsed magnetron plasmas", Vacuum, Vol. 65, No. 2, pp. 147-154 (2002).
    [31] J. Alami and P. Thesis, "Plasma Characterization & Thin Film Growth and Analysis in Highly Ionized Magnetron Sputtering", Linkoping University (2005).
    [32] A. Anders, "A structure zone diagram including plasma-based deposition and ion etching", Thin Solid Films, Vol. 518, No. 15, pp. 4087-4090 (2010).
    [33] K. Sarakinos, J. Alami, and S. Konstantinidis, "High power pulsed magnetron sputtering: A review on scientific and engineering state of the art", Surface and Coatings Technology, Vol. 204, No. 11, pp. 1661-1684 (2010).
    [34] H. Takikawa and H. Tanoue, "Review of cathodic arc deposition for preparing droplet-free thin films", Plasma Science, IEEE Transactions on, Vol. 35, No. 4, pp. 992-999 (2007).
    [35] S. Schmidt, Z. Czigány, G. Greczynski, J. Jensen, and L. Hultman, "Ion mass spectrometry investigations of the discharge during reactive high power pulsed and direct current magnetron sputtering of carbon in Ar and Ar/ N2", Journal of Applied Physics, Vol. 112, No. 1, pp. 013305-1-013305-11 (2012).
    [36] D.J. Christie, F. Tomasel, W.D. Sproul, and D.C. Carter, "Power supply with arc handling for high peak power magnetron sputtering", Journal of Vacuum Science & Technology A, Vol. 22, No. 4, pp. 1415-1419 (2004).
    [37] S. Konstantinidis, J.P. Dauchot, M. Ganciu, A. Ricard, and M. Hecq, "Influence of pulse duration on the plasma characteristics in high-power pulsed magnetron discharges", Journal of Applied Physics, Vol. 99, pp. 013307-1-013307-5 (2006).
    [38] J. Alami, K. Sarakinos, F. Uslu, and M. Wuttig, "On the relationship between the peak target current and the morphology of chromium nitride thin films deposited by reactive high power pulsed magnetron sputtering", Journal of Physics D: Applied Physics, Vol. 42, No. 1, pp. 015304-1-015304-7 (2009).
    [39] D.J. Christie, "Target material pathways model for high power pulsed magnetron sputtering", Journal of Vacuum Science & Technology A, Vol. 23, No. 2, pp. 330-335 (2005).
    [40] H.J. Kim, M.H. Park, Y.J. Kim, Y.H. Lee, W. Jeon, T. Gwon, T. Moon, K.D. Kim, and C.S. Hwang, "Grain size engineering for ferroelectric Hf0.5Zr0.5O2 films by an insertion of Al2O3 interlayer", Applied Physics Letters, Vol. 105, pp. 192903-1-192903-5 (2014).
    [41] T. Olsen, U. Schröder, S. Müller, A. Krause, D. Martin, A. Singh, J. Müller, M. Geidel, and T. Mikolajick, "Co-sputtering yttrium into hafnium oxide thin films to produce ferroelectric properties", Applied Physics Letters, Vol. 101, pp. 082905 (2012).
    [42] M.K. Park, H.J. Kim, Y.J. Kim, W. Lee, T. Moon, C.S. Hwang, "Evolution of phases and ferroelectric properties of thin Hf0.5Zr00.5O2 films according to the thickness and annealing temperature", Applied Physics Letters, Vol. 102, pp. 242905 (2013).
    [43] T. Shimizu, T. Yokouchi, T. Oikawa, T. Shiraishi, T. Kiguchi, A. Akama, Toyohiko J. Konno, A. Gruverman, and H. Funakubo, "Contribution of oxygen vacancies to the ferroelectric behavior of Hf0.5Zr0.5O2 thin films", Applied Physics Letters, Vol. 106, pp. 112904 (2015).
    [44] M.H. Park, H.J. Kim, Y.J. Kim, Woongkyu Lee, H.K. Kim, and C.S. Hwang, "Effect of forming gas annealing on the ferroelectric properties of Hf0.5Zr0.5O2 thin films with and without Pt electrodes", Applied Physics Letters, Vol. 102, pp. 112914-1-112914-4 (2013).

    下載圖示
    QR CODE