簡易檢索 / 詳目顯示

研究生: 吳語萱
Wu, Yu-Xuan
論文名稱: 9.46微米量子級聯雷射結合T型光聲光譜技術與多次反射直接吸收模型對臭氧濃度之定量分析
Quantitative ozone concentration using T-shaped multi-pass photoacoustic module with a quantum cascade laser at 9.46 µm
指導教授: 羅佩凌
Luo, Pei-Ling
王迪彥
Wang, Di-Yan
口試委員: 羅佩凌
Luo, Pei-Ling
王迪彥
Wang, Di-Yan
朱立岡
Chu, Li-Kang
口試日期: 2024/06/27
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 68
中文關鍵詞: 臭氧光聲光譜T型共振腔即時切換光譜
英文關鍵詞: ozone, photoacoustic spectroscopy, T-shaped cavity, switching spectroscopy in real time
研究方法: 實驗設計法
DOI URL: http://doi.org/10.6345/NTNU202401337
論文種類: 學術論文
相關次數: 點閱:99下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 致謝 i 摘要 ii Abstract iii 目次 iv 圖次 vi 表次 ix 第一章 緒論 1 1-1 臭氧的重要性 1 1-2 臭氧檢測方法 6 1-2-1 化學式臭氧檢測方法 6 1-2-2 光學式臭氧檢測 7 1-3 研究目的 10 第二章 原理介紹 11 2-1 臭氧吸收光譜 11 2-2 量子級聯雷射 12 2-3 光聲光譜 13 2-3-1 光聲光譜之共振腔特性 14 2-4 波長調制光譜 15 第三章 系統架設 17 3-1 系統光源特性 17 3-1-1 光源功率與波長分布分析 17 3-1-2 光束品質分析 19 3-2 T型共振腔模組介紹 21 3-2-1 T型共振腔介紹 21 3-2-2 腔體元件設計 22 3-2-3 多次反射光路設計 23 第四章 實驗結果分析與討論 24 4-1 直接吸收訊號分析 24 4-1-1 直接吸收之實驗架構 24 4-1-2 有效吸收路徑長之分析 27 4-1-3 臭氧濃度定量之分析 29 4-2 光聲光譜系統頻率響應分析 32 4-2-1 頻率響應系統架構圖 32 4-2-2 頻率響應分析 33 4-3 即時切換之光聲光譜與直接吸收量測 36 4-3-1 即時切換系統之實驗架構 36 4-3-2 數據收集方式 38 4-3-3 二階波長調制深度分析 39 4-3-4 光聲光譜與直接吸收之即時訊號分析 41 4-4 系統之艾倫方差分析 44 4-5 臭氧即時監測分析 45 4-6 多次反射式光聲光譜系統之比較 46 第五章 結論 48 第六章 參考文獻 49 附錄 55 附錄一 有效吸收路徑長與有效光功率之關係 55 附錄二 密集點型吸收腔光路推導 56 附錄三 共振電路設計 60 附錄四 LabView程式控制與數據分析 61

    [1] D.H. Nguyen, C. Lin, C.T. Vu, N. K. Cheruiyot, M. K.Nguyen,et al., "Tropospheric ozone and NO: A review of worldwide variation and meteorological influences," Environ. Technol. Innov., vol. 28, p. 102809, 11 2022.
    [2] M. E Merienne, A. Jenouvrier ,and B. Coquart, "The NO2 Absorption Spectrum. I: Absorption Cross-Sections at Ambient Temperature in the 300-500 nm Region," J. Atom. Chem., vol. 20, pp. 281-297, 1995.
    [3] I. Arnold ,and F.J. Comes, "Temperature dependence of the reactions O(3P) + O3 → 2O2 and O(3P) + O2 + M → O3 + M," Chem. Phys., vol. 42, p. 231, 1979.
    [4] P. P. Bemand, M. A. A. Clyne and R. T. Watson, "Atomic resonance fluorescence and mass spectrometry for measurements of the rate constants for elementary reactions: O 3PJ+ NO2→ NO + O2 and NO + O3→ NO2+ O2," J. Chem. Soc. Faraday Trans. 2, vol. 70, p. 564, 1974.
    [5] D. Chen,Y.H. Xu,J.C. Xu,M.L. Lian , W.Zhang,et al., "The Vertical Distribution of VOCs and Their Impact on the Environment: A Review," Atmosphere, vol. 13, p. 1940, 2022.
    [6] R. R. Baldwin ,and R. W. Walker , "Rate Constants for Hydrogen+Oxygen System, and for H Atoms and OH Radicals+Alkanes," J. Chem. Soc., Faraday Trans. 1, vol. 75, pp. 140-154, 1979.
    [7] V. D. Knyazev ,and I. R. Slagle, "Thermochemistry of the R−O2 Bond in Alkyl and Chloroalkyl Peroxy Radicals," J. Phys. Chem. A, vol. 10, pp. 1770-1778, 1998.
    [8] M. J. Goldman, W. H. Green ,and J. H. Kroll, "Chemistry of Simple Organic Peroxy Radicals under Atmospheric through Combustion Conditions: Role of Temperature, Pressure, and NOx Level," J. Phys. Chem. A, vol. 125, pp. 10303-10314, 2021.
    [9] K. L. Demerjian, J. A. Kerr,and J. G. Calvert, "The mechanism of photochemical smog formation," Adv. Environ. Sci. Technol., vol. 4, p. 1, 1974.
    [10] B. Bohn ,and C. Zetzsch, "Rate Constants of HO2 + NO Covering Atmospheric Conditions. 1. HO2 Formed by OH+ H2O2," J. Phys. Chem. A, vol. 101, pp. 1488-1493, 1997.
    [11] S. S. Brown, R. K. Talukdar ,and A.R. Ravishankara, "Rate constants for the reaction OH+NO2+M → HNO3+M under atmospheric conditions," Chem. Phys. Lett., vol. 299, pp. 277-284, 1999.
    [12] R. E. Huie ,and J.T. Herron, "The rate constant for the reaction O3 + NO2 → O2 + NO3 over the temperature range 259–362 °K," Chem. Phys. Lett., vol. 27, pp. 411-414, 1974.
    [13] L. C. Jitariu,and D. M. Hirst, "Theoretical investigation of the N2O5⇌NO2+NO3 equilibrium by density functional theory and ab initio calculations," Phys. Chem. Chem. Phys., vol. 2, pp. 847-852, 2000.
    [14] I. M. Alecu ,and P. Marshall, "Computational Study of the Thermochemistry of N2O5 and the Kinetics of the Reaction N2O5 + H2O → 2 HNO3," J. Phys. Chem., vol. 118, pp. 11405-11416, 2014.
    [15] J.F. (Jim) Zhang, Y.J. Wei ,and Z.F. Fang, "Ozone Pollution: A Major Health Hazard Worldwide," Frontiers, vol. 10, p. 02518, 2019.
    [16] M. L. Bell, A. McDermott ,and S. L. Zeger, "Ozone and Short-term Mortality in 95 US Urban Communities, 1987-2000," JAMA, vol. 292, pp. 2372-2378, 2004.
    [17] P. B. Morgan, T. A. Mies, G. A. Bollero, R. L. Nelson ,and S. P. Long, "Season-long elevation of ozone concentration to projected 2050 levels under fully open-air conditions substantially decreases the growth and production of soybean," New Phytol., vol. 170, pp. 333-343, 2006.
    [18] C.P. Leisner ,and E.A. Ainsworth, "Quantifying the effects of ozone on plant reproductive growth and development," Glob. Change Biol., vol. 18, pp. 606-616, 2011.
    [19] N. Sui , P. Zhang , T.T. Zhou ,and T. Zhang, "Selective ppb-level ozone gas sensor based on hierarchical branch-like In2O3 nanostructure," Sensor Actuat B-chem, vol. 336, p. 129612, 2021.
    [20] A.C. Catto , T.Fiorido , E. L.S. Souza, W. A. Jr., J. Andres, K. Aguir, E. Longo, L. S. Cavalcante ,and L. F. da Silva, "Improving the ozone gas-sensing properties of CuWO4 nanoparticles," J. Alloys Compd., vol. 748, pp. 411-417, 2018.
    [21] X.B. Pang, M. D. Shaw, A. C. Lewis , L. Carpenter ,and T. Batchellier, "Electrochemical ozone sensors: A miniaturised alternative for ozone measurements in laboratory experiments and air-quality monitoring," S&A, vol. 270, p. 829–837, 2017.
    [22] C. Zuidema, N. A.-Mohajer, M. Tatum ,and G. Thomas,, "Efficacy of Paired Electrochemical Sensors for Measuring Ozone Concentrations,Thomas Peters,Kirsten Koehler," OEH, vol. 16, pp. 179-190, 2018.
    [23] S. Jodpimai, S. Boonduang ,and P. Limsuwan, "Inline ozone concentration measurement by a visible absorption method at wavelength 605 nm," Sensor Actuat. B-chem., vol. 222, pp. 8-14, 2016.
    [24] N. A420.12C, “空氣中臭氧自動檢驗方法-紫外光吸收法,” 環署檢字第 1040109921 號, 環境部, 2016.
    [25] S. O’Keeffe, C. Fitzpatrick ,and E. Lewis, "An optical fibre based ultra violet and visible absorption spectroscopy system for ozone concentration monitoring," Sensor Actuat B-chem, vol. 125, pp. 372-378, 2007.
    [26] R. A. Washenfelder,N. L. Wagner, W. P. Dube, and S. S. Brown, "Measurement of Atmospheric Ozone by Cavity Ring-down Spectroscopy," ACS. Environ. Sci. Technol, vol. 45, pp. 2938-2944, 2011.
    [27] A. Puga ,and A. Yalin, "Ozone Detection via Deep-Ultraviolet Cavity-Enhanced Absorption Spectroscopy with a Laser Driven Light Source," Sens., vol. 23, p. 4989, 2023.
    [28] T. T. Wei, H. P. Wu, L. Dong and F. K. Tittel, "Acoustic Detection Module Design of a Quartz-Enhanced Photoacoustic Sensor," Sens., vol. 19, p. 1093, 2019.
    [29] K. Keeratirawee ,and P.C. Hauser, "Photoacoustic detection of ozone with a red laser diode," Talanta, vol. 223, p. 1890, 2021.
    [30] T.L. Wee ,and A. H. Kung, "Sensitive UV photoacoustic detection of ozone," SPIE, vol. 5337, pp. 150-157, 2004.
    [31] M.G. Silva,H. Vargas,A. Miklos ,and P. Hess, "Photoacoustic detection of ozone using a quantum cascade laser," Appl. Phys. B, vol. 78, pp. 677-680, 2004.
    [32] J. F.S.Petruci, P. R. Fortes ,and V. Kokoric, "Real-time monitoring of ozone in air using substrate-integrated hollow waveguide mid-infrared sensors," Sci. Rep., vol. 3, p. 3174, 2013.
    [33] D. N. Barreto, W.R.Silva, B. Mizaikoff ,and J. F. S. Petruci, "Monitoring Ozone Using Portable Substrate-Integrated Hollow Waveguide-Based Absorbance Sensors in the Ultraviolet Range," ACS Meas. Sci., vol. 2, pp. 39-45, 2022.
    [34] L. S. Rothman, "History of the HITRAN Database," Nat. Rev. Phys., vol. 3, pp. 302-304, 2021.
    [35] R. Stolarski, "Stratospheric Ozone Variability.," Diana J. Sunday. [Online].
    [36] "The Quantum Cascade Laser," Eidgenössische Technische Hochschule Zürich, 2024. [Online]. Available: https://qoe.ethz.ch/Tutorials/quantum_cascade_laser.html.
    [37] D. Wolfgang, "photoacoustic spectrscopy," in Laser Spectroscopy 2 Experimental Techniques 5th Edition, Springer, 2015, pp. 35-36.
    [38] S. Schilt ,and L. The´venaz, "Wavelength modulation photoacoustic spectroscopy:Theoretical description and experimental results," Infrared Phys. Techn., vol. 48, pp. 154-162, 2006.
    [39] 邱泳倫, “雷射光束品質量測系統之開發與研究,” 國 立 交 通 大 學, 臺灣, 2013.
    [40] B. Baumann, M. Wolff, B. Kost,and H. Groninga, "Finite element calculation of photoacoustic signals," AO, vol. 46, p. 1120, 2007.
    [41] L.R. Brown, D. Chris Benner, J.P. Champion, V.M. Devi, L. Fejard, R.R., et al., "Methane lineparametersintheHITRAN2012database," J Quant Spectrosc Ra, vol. 82, pp. 219-238, 2003.
    [42] M. Ackerman, F. Biaume ,and M. Nicolet, "Absorption in the spectral range of the Schumann-Runge bands," Can. J. Chem, vol. 47, pp. 1836-1940, 1969.
    [43] M. Birk, G. Wagner, A. Barbe, M.-R.De Backer, M. Rotger ,and J.-M. Flaud, "ESA SEOM-IAS – Measurement and line parameter database O3 MIR region," 20 11 2018. [Online]. Available: 10.5281/zenodo.4428825..
    [44] M. Zhang, B. Zhang, K. Chen, M. Guo, S. Liu, et al., "Miniaturized multi-pass cell based photoacoustic gas sensor for parts-per-billion level acetylene detection," Sensor Actuat A-Phs., vol. 308, p. 112013, 2020.
    [45] C.X.Li, H.C. Qi, X.Y. Zhao, M. Guo, R. An ,and K. Chen, "Multi-pass absorption enhanced photoacoustic spectrometer based on combined light sources for dissolved gas analysis in oil," Opt. Lasers Eng., vol. 159, p. 107221, 2022.
    [46] Y.F. Li, G.Y. Guan, Y. Lu, X.T. Liu, S. Yang, C.T. Zheng, F. Song, Y. Zhang, Y.D. Wang ,and F. K. Tittel, "Highly sensitive near-infrared gas sensor system using a novel H-type resonance-enhanced multi-pass photoacoustic cell," Measurement, vol. 220, p. 113380, 2023.
    [47] X.Y. Zhao, Mi. Guo, D.Y. Cui, C.X. Li, H.C. Qi, et al., "Multi-pass Differential Photoacoustic Sensor for Real-Time Measurement of SF6 Decomposition Component H2S at the ppb Level," Anal. Chem., vol. 95, pp. 8214-8222, 2023.
    [48] X.Y. Zhao, K. Chen, D.Y. Cui, M. Guo, C.X. Li, et al., "Ultra-high sensitive photoacoustic gas detector based on differential multi-pass cell," Sensor Actuat B-chem, vol. 368, p. 132124, 2022.
    [49] X.Y. Zhao, H.C. Qi, H. Wang, X. Wang, M. Guo, W. Peng ,and K. Chen, "Dense Multibutterfly Spots-Enhanced Miniaturized Optical Fiber Photoacoustic Gas Sensor," Anal. Chem., vol. 96, pp. 5554-5559, 2024.
    [50] X.Y. Zhao, K. Chen, M. Guo ,and C.X. Li, "Ultra-High Sensitive Multipass Absorption Enhanced Fiber-Optic Photoacoustic Gas Analyzer," IEEE, vol. 72, p. 7006708, 2022.
    [51] R.Y. Cui, L. Dong,H.P. Wu ,S.Z. L I, X.K. Yin ,and L.Zhang, "Calculation model of dense spot pattern multi-pass cells based on a spherical mirror aberration," Opt. Lett., vol. 4, p. 1108, 2019.

    無法下載圖示 電子全文延後公開
    2027/06/30
    QR CODE