簡易檢索 / 詳目顯示

研究生: 戴志傑
論文名稱: 行動裝置應用之飲料辨識系統
A Beverage Package Recognition System for Mobile Application
指導教授: 葉梅珍
學位類別: 碩士
Master
系所名稱: 資訊工程學系
Department of Computer Science and Information Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 41
中文關鍵詞: 商品辨識行動裝置應用
論文種類: 學術論文
相關次數: 點閱:163下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著食品工業科技的進步與發達,國內民眾每日都能輕易獲得眾多種類的包裝飲料。飲料辨識技術不僅能讓民眾更方便的獲得飲料資訊,也能藉由飲料成份與附加資訊提醒消費者在健康上需注意的部份(卡路里以及糖份的攝取......等等)。由於智慧型行動裝置也日益普及並將成為未來趨勢,發展基於行動裝置應用的辨識系統更加能貼近一般民眾使用的機會與增進其便利性。近年來在行動裝置上的商品辨識已發展的非常迅速,我們建立的飲料包裝辨識系統能夠讓使用者在不翻動飲料的情況下,就能得到飲品上的資訊。然而飲料包裝和一般商品(如:書本、CD專輯)最大的不同在於飲料商品能包裝在罐裝、瓶裝上,導致欲辨識的飲料包裝除了會有觀察角度上的不同,更受到立體包裝曲面的因素,使包裝圖樣產生變形,增加辨識困難度。此外,同系列的飲料中,即使是不同口味的飲料,也可能在外觀上擁有相同的或類似的標籤圖樣,使得這些飲料具有共同特徵,增加辨別的困難。為了解決上述問題,我們建立了一個飲料包裝辨識系統。此系統比較一張詢問圖(query image)和各種飲料包裝展開圖之間的相似度,並找出最相像的圖片作為結果。我們取下飲料包裝掃描其完整圖樣,以建立圖片資料庫。在辨識過程中,同系列的飲料常有相近的特徵點匹配個數,因此我們設計一個特徵點權重機制,使系統能從同系列飲料中找出特定口味而不產生混淆。此系統利用客戶端伺服器(Client- Server based)的架構來傳遞詢問圖以及辨識結果,並且在實驗證明其辨識速度與辨識率皆達到不錯的成果。

    In this paper, we study the beverage package recognition problems. The system can help consumer get the beverage’s information (calorie and price) which they do not need to flip the beverage to check the information on the package. Unlike products such as books and CDs that are primarily packaged in rigid forms, the beverage labels may be attached on cylinder forms (bottle or can). Furthermore, similar visual patterns may appear on distinct beverage packages that belong to the same series. To solve these problems, we build a beverage recognition system for mobile application. The system compares a query image to a collection of panoramic images which are unrolled and scanned beverage labels extracted from various package forms. Moreover, we introduce a weighting scheme to identify a beverage among other flavor varieties in the same series. We present a client-server based system through mobile device. The experiment results show that it can achieve a fairly good recognition performance

    圖表目錄 iii 第一章 簡介 1 1.1研究動機 1 1.2問題描述 2 1.3論文架構 4 第二章 文獻探討 5 2.1食品辨識(Food recognition) 5 2.2本地特徵之視覺搜尋技術 7 2.3行動裝置視覺搜尋系統架構 9 第三章 系統架構 11 3.1 客戶端伺服器(Client-server based)架構 11 3.2飲料圖片資料庫 15 第四章 階層式辨識程序 21 4.1粗略辨識(Coarse Recognition) 21 4.2精鍊搜尋(Refinement Search) 25 第五章 實驗結果 28 第六章 結論 34 6.1實際演示之環境與用途 34 參考文獻 37

    [1] Google Goggles, http://www.google.com/mobile/googles/.
    [2] SnapTell, http://www.snaptell.com.
    [3] Kooaba, http://kooaba.com.
    [4]http://www.foodprocessing.com/wp_downloads/gt_appetite.html
    [5] R. C. Palmer, The Bar Code Book: Reading, Printing, and Specification of Bar Code Symbols, 3rd Edition, Helmers Publishing, 1995.
    [6] B. Glover and H. Bhatt, RFID Essentials, O'Reilly Media, 2006.
    [7] D. Nister, and H. Stewenius, “Scalable recognition with a vocabulary tree”, in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 2161-2168, 2006.
    [8] S. Tsai, D. Chen, J. Singh, and B. Girod, "Rate-efficieent, real-time CD cover recognition on a camera-phone", in Proceedings of ACM Multimedia (MM), Vancouver, Canada, October 2008.
    [9] S. Tsai, D. Chen, V. Chandrasekhar, G. Takacs, N. -M. Cheung, R. Vedantham, R. Grzeszczuk, and B. Girod, "Mobile product recognition", in Proceedings of ACM Multimedia (MM), Florence, Italy, October 2010.
    [10] D. G. Lowe, “Distinctive image features from scale-invariant keypoints”, International Journal on Computer Vision (IJCV), 60(2):91-110, 2004.
    [11] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, "SURF: Speeded Up Robust Features", Computer Vision and Image Understanding (CVIU), 110(3):346-359, 2008.
    [12] K. Mikolajczyk andC. Schmid, “Performance evaluation of local descriptors”, IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), 27(10):1615-1630, 2005.
    [13] N. Dalal and B. Triggs, “Histograms of oriented gradients for human detection”, in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages 886-893, 2005.
    [14] V. Chandrasekhar, G. Takacs, D. Chen, S. Tsai, R. Grzeszczuk, and B. Girod, "CHoG: compressed histogram of gradients", in Proceedings of IEEE International Conference on Computer Vision and Pattern Recognition (CVPR), Miami, Florida, June 2009.
    [15] V. Chandrasekhar, D. Chen, A. Lin, G. Takacs, S. Tsai, N. –M. Cheung, Y. Reznik, R. Grzeszczuk, and B. Girod, “Comparison of local feature descriptors for mobile visual search”, in Proceedings of IEEE International Conference on Image Processing (ICIP), Hong Kong, China, September 2010.
    [16] V. Gaede and O. Gunther, “Multidimensional access methods”, ACM Computer Survey, 30(2):170-231, 1998.
    [17] W. –T. Lee and H. –T. Chen, “Probing the local-feature space of interest points”, in Proceedings of IEEE International Conference on Image Processing (ICIP), 2010.
    [18] Food safety crisis (plasticizer) in Taiwan, http://www.fda.gov.tw/content.aspx?site_content_sn=24
    [19] Regina W.Y. Wang, “Employment of Visual Elements for Identifying Beverage Package Design Discrepancies ”International Association of Societies of Design Research”, 2009
    [20] Mei Chen, Kapil Dhingra, Wen Wu, Lei Yang, Rahul Sukthankar, Jie Yang, PFID: Pittsburgh fast-food image dataset, in Proceedings of IEEE International Conference on Image Processing (ICIP) , 2009
    [21] Wen Wu, Jie Yang, Fast food recognition from videos of eating for calorie estimation, International Conference on Multimedia & Expo (ICME), 2009
    [22] Taichi Joutou and Keiji Yanai, A Food Image Recognition System with Multiple Kernel Learning, in International Conference on Image Processing (ICIP), 2009
    [23] Hajime Hoashi, Taichi Joutou and Keiji Yanai, Image Recognition of 85 Food Categories by Feature Fusion, Proc. of the Second Workshop on Multimedia for Cooking and Eating Activities, Taichu, Taiwan (2010/12).
    [24] Kong, Fanyu ; Tan, Jindong , DietCam: Regular Shape Food Recognition with a Camera Phone , Body Sensor Networks (BSN), 2011
    [25] G. Csurka, C. Bray, C. Dance, and L. Fan, “Visual categorization with bags of keypoints,” in Proc. of ECCV Workshop on Statistical Learning in Computer Vision, 2004, pp. 59–74
    [26] D. Chen, S. Tsai, C.-H. Hsu, J. P. Singh, and B. Girod, "Mobile augmented reality for books on a shelf", IEEE Workshop on Visual Content Identification and Search (VCIDS), July 2011.
    [27] D. Chen, S. Tsai, R. Vedantham, R. Grzeszczuk, and B. Girod, "Streaming mobile augmented reality on mobile phones", International Symposium on Mixed and Augmented Reality (ISMAR), October 2009.
    [28] http://www.stanford.edu/~dmchen/mvs.html
    [29] S. Yang, M. Chen, D. Pomerleau, and R. Sukthankar, “Foodrecognition using statistics of pairwise local features,” in Proc. of IEEE Computer Vision and Pattern Recognition (CVPR), 2010.
    [30] G. Shroff, A. Smailagic, and D. Siewiorek. Wearable context-aware food recognition for calorie monitoring. In Proceedings of International Symposium on Wearable Computing, 2008

    下載圖示
    QR CODE