簡易檢索 / 詳目顯示

研究生: 蔡承佑
Cheng-You Tsai
論文名稱: 脈衝雷射蒸鍍法製備氧化鈥鋅薄膜的探討: 結構、光學與磁性研究
Study of Zinc Holmium Oxide Thin Films Grown by Pulsed-Laser Deposition: Structural, Optical, and Magnetic Properties
指導教授: 駱芳鈺
Lo, Fang-Yuh
學位類別: 碩士
Master
系所名稱: 物理學系
Department of Physics
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 40
中文關鍵詞: 稀磁性半導體氧化鋅脈衝雷射沉積法
英文關鍵詞: DMS, PLD, ZnO, Ho
論文種類: 學術論文
相關次數: 點閱:299下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

利用脈衝雷射沉積法製備氧化鋅摻鈥薄膜,鈥的原子莫耳濃度介於3~30%之間,沉積於c方向的藍寶石基板。鍍膜環境氧氣壓力為3×10-2mbar,基板溫度為750℃。部分樣品在溫度650℃進行一小時的退火。拉曼散射光譜顯示僅有濃度5%退火處理後的Ho樣品產生合金相。光致螢光光譜能將大部分的樣品分析出鋅空缺、鋅間隙以及鋅錯位的缺陷發光訊號,而整體發光強度隨著Ho摻入濃度的上升而增強。所有樣品在5K及300K外加磁場下的量測下表現皆為順磁性。

Pulsed-laser deposition (PLD) was applied to grow holmium-doped ZnO (Ho:ZnO) thin films on c-sapphire substrate with different holmium(Ho) concentrations. The Ho doping concentration ranges between 3% and 30%. The oxygen pressure of crystal growth is 3×10-2 mbar and the substrate temperature is
750℃.Half of the samples are thermally annealed treatment at 650℃ for an hour. The Raman-scattering spectroscopy reveals that there is no secondary phase except Zn0.95Ho0.05O after annealing. Photoluminescence spectra of most of the samples consist of zine vacancy、zine interstitial and antisite zine defect emissions, and the overall intensity increases monotonically with Ho density. The m-H curves show that all samples are paramagnetic at 5K and 300K.

Chapter 1 序論 1 Chapter 2 背景知識 2 2.1氧化鋅(ZnO)、鈥(Ho)與藍寶石基板(Sapphire)性質 2 2.2脈衝雷射蒸鍍法(Pulsed Laser Deposition,PLD) 2 2.2.1原理 2 2.2.2 PLD鍍膜系統 3 2.3光致螢光(Photoluminescence,PL) 5 2.3.1基本原理 5 2.3.2實驗過程 8 2.5拉曼散射光譜(Raman-scattering Spectroscopy) 9 2.6 X射線光電子能譜(XPS) 11 2.7超導量子干涉磁量儀(SQUID magnetometer) 12 2.8磁性簡介 13 Chapter 3 實驗過程 15 3.1鍍膜條件 15 3.2靶材製作 16 3.3鍍膜步驟 16 Chapter 4 結果與討論 17 4.1成份分析(XPS) 與鍍膜速率分析 17 4.1.1成分分析 17 4.1.2鍍膜速率分析 18 4.2拉曼分析 20 4.3光學特性 22 4.3.1變溫光譜 22 4.3.2 T = 300K時各薄膜的比較 28 4.3.3 T = 20K時各薄膜的比較 29 4.3.4譜線分析 30 4.4磁性分析 31 4.4.1低溫(5K)與室溫(300K)m-H結果討論 31 4.4.2場冷(FC)與零場冷(ZFC)m-T結果討論 35 Chapter 5 結語與未來展望 38 參考資料 39

[1] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand, Science 287, 1019
(2000).
[2] Akira Onodera and Masaki Takesada, Electronic Ferroelectricity in II-VI Semicon-
ductor ZnO(Japan , Hokkaido University) .
[3] T. S. Herng , A. Kumar , C. S. Ong , Y. P. Feng , Y. H. Lu , K. Y. Zeng and J. Ding,
SCIENTIFIC REPORTS(2012).
[4] A. C. Mofor, A. S. Bakin, B. Postels, M. Suleiman, A. Elshaer, and A,Waag, Thin
Soild Films 516, 1401,(2008).
[5] D. Jiles, Introduction to magnetism and magnetic materials, in: Ed. (Ed.),
Chapman & Hall,(1998).
[6] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V. Avrutin,
S.-J. Cho, and H. Morkoc, A comprehensive review of ZnO materials and devices,
J. Appl. Phys. 98, 041301 (2005).
[7] 陳銘堯,物理雙月刊(十五卷五期)(1993).
[8] 簡志峰,脈衝雷射蒸鍍法蒸鍍氧化鋅及氧化釓鋅薄膜,國立臺灣師範大學,2011
[9] N. Kasai M. Kakudo, X-Ray Diffraction by Macromolecules(Springer, 2005).
[10] 蔡逸帆,氧化鋅鎂合金之電子-聲子交互作用研究(2013)
[11] E. G. Bylander et al. J. Appl. Phys. 49, 1188 (1978)
[12] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason and
G. Cantwell, Appl. Phys. Lett. 81, 1830 (2002)
[13] B. Lin, et al .J. Electrochem. Soc., vol. 148, pp. G110-G113, 2001
[14] Hadis Morkog, Ümit Özgür, Zinc Oxide: Fundamentals, Materials and Device
Technology, (WILEY-VCH, 2007), p 43.
[15] 劉漢鈞,氮化銦奈米柱之光學性質研究, p 38.
[16] YU Jinqiu *, CUI Lei, HE Huaqiang, YAN Shihong, HU Yunsheng, WU Hao,
JOURNAL OF RARE EARTHS, Vol. 32, 1 , (2014).
[17] M. Khalid, M. Ziese, A. Setzer, P. Esquinazi, M. Lorenz, H. Hochmuth,
M.Grundmann, D. Spemann, T. Butz, G. Brauer, W. Anwand, G. Fischer,
W. A. Adeagbo, W. Hergert, and A. Ernst, PHYSICAL REVIEW B 80,035331
(2009).
[18] B. B. Straumal, S. G. Protasova, A. A. Mazilkin, A. A. Myatiev, P. B. Straumal,
G. Schütz, E. Goering, and B.Baretzky, Journal of Applied Physics 108, 073923
(2010).
[19] S. Dhar,* O. Brandt, M. Ramsteiner, V. F. Sapega,†and K. H. Ploog,
PhysRevLett.94.037205 (2005).

下載圖示
QR CODE