簡易檢索 / 詳目顯示

研究生: 曾書皇
Zeng, Shu-Huang
論文名稱: 計算水煤氣轉移反應在金與鉑(100)、(110)、(111)、(211)表面上的反應機構
Computational Investigation of Water-Gas-Shift Reaction (WGSR) on (100) (110) (111) and (211) Facets of Au and Pt
指導教授: 王禎翰
Wang, Jeng-Han
學位類別: 碩士
Master
系所名稱: 化學系
Department of Chemistry
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 60
中文關鍵詞: 水煤氣反應羧酸化氧化還原甲酸化乙醇氧化循環伏安法計時安培法
英文關鍵詞: Water gas reaction, Gold, Platinum, Carboxyl, Redox, Formate, Ethanol oxidation, Cycle voltagemetry, Chronoamperometry
DOI URL: https://doi.org/10.6345/NTNU202203700
論文種類: 學術論文
相關次數: 點閱:159下載:15
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水煤氣轉移反應最佳活性的催化劑金、鉑系統性的檢驗在(111)、(100)、(110)、(211)表面結構效應對於反應的影響。首先計算水煤氣轉移反應重要的中間產物(CHO、CO、CO2、COOH、H、H2O、HCOO、O、OH)在上述表面的吸附能。從結果來看我們可以發現開放(100)、(110)、(211)的階梯型表面在大部分的例子中吸附能略強於(111)表面,而且Pt表面吸附能大於Au表面。此外,我們檢驗上述表面對於水煤氣轉移反應的三種路徑(1) 羧酸化(2)氧化還原(3)甲酸化的反應熱與活化能。Pt(111)傾向走羧酸化路徑;Pt(211)、Pt(100)、Au(100)、Au(110)、Au(211)、Au(111)傾向於氧化還原路徑;甲酸化有相對較高的反應熱,反應較不易發生。所有的Au表面的活化能都低於Pt表面,顯示Au是水煤氣轉移反應較佳的催化劑。最佳路徑的速率決定步驟沒有太大差別,顯示表面的修改可能改變反應路徑,但不影響活性。
    附錄
    乙醇氧化反應主要分成兩種路徑: (1)乙醇斷裂碳碳鍵發生12個電子轉移的C1路徑(2)乙醇氧化成乙醛轉移兩個電子,再氧化成乙酸轉移2個電子。催化劑活性利用循環伏安法、壽命使用計時安培法、反應產物以即時性傅立葉轉換紅外線光譜儀來鑑定並推測反應機構。本實驗以電解質濃度與反應溶液體積作為變數觀察催化劑反應機構,掃描範圍為 -0.9~0.6 V,在KOH濃度在2 M時,具有催化劑最大活性與最大穩定性,體積對於催化劑的活性沒有顯著的影響。

    Water gas shift reactions (WGSR) has been systematically examined on different facets of (111), (100), (110) and (211) of the most active catalysts of Pt and Au to optimize the structure effect of the catalytic reaction. Initially, the adsorption energy of key intermediates (CHO, CO, CO2, COOH, H, H2O, HCOO, O, OH) in WGSR on those facets has been computed. The energetic result finds that the opened (100) and (110) and stepped (211) facts have slightly stronger adsorption energies than (111) facet in most case and all the adspecies adsorbed stronger on Pt than Au surfaces. Furthermore, we examined the reaction energies and activation barriers for the three major pathways of WGSR, carboxyl, redox and formate, on those facets. The energetic results show that the Pt(111) prefer carboxyl pathway while the Pt(211)、Pt(100), Au(100), Au(110), Au(211) , Au(111)favor redox pathway. Formate pathway has relatively higher energetics and is less likely to occur on any surfaces. All the Au facets have lower energetics than the Pt ones, implying Au is a better catalyst for WGSR. Also, the rate determining steps of favored pathways on those surface show limited differences, indicating that the modification of facets could change the reaction pathways, but not likely alter the catalytic activity for WGSR.
    Appendix
    Ethanol oxidation reaction contains two major pathways (1)C-C cleavage involve 12 electrons transform ,called C1 pathway (2)ethanol oxidative to aldehyde including 2 electrons transform, continue to oxidative aldehyde to acetic acid including 2 electrons transform. To identify mechanism, we test activity of catalysts by CV, stability by CA, products by in situ IR. We change concentration of electrolyte and solution volume to observe mechanism .Scam range from -0.9 to 0.6 V. When electrolyte is 2 M, the catalyst had the best activity and stability and solution volume don’t had no trend to catalyst.

    目錄 I 圖目錄 III 表目錄 V 摘要 1 附錄 1 Abstract 2 第一章 緒論 3 1.1 前言 3 1.2 水煤氣反應介紹 3 第二章 計算流程介紹 6 2.1 國家高速網路與計算中心 6 2.2 DFT理論簡介 6 2.3 操作軟體Vienna Ab-initio Simulation Package (VASP) 7 第三章 結果與討論 18 3.1 金屬表面介紹 18 3.2 表面吸附位置 19 3.3 水煤氣反應理論計算 21 3.3.1 反應物吸附能量 21 3.3.2 反應的活化能與反應熱 27 第四章 水煤氣催化反應結論 36 4.1 水煤氣反應計算結論 36 4.2 水煤氣反應未來方向 36 附錄 37 第五章 燃料電池與電化學實驗流程 37 5.1 直接乙醇燃料電池 37 5.1.1 乙醇氧化反應 37 5.1.2 陽極半電池 38 第六章 電化學實驗流程介紹 39 6.1 電化學 39 6.1.1 實驗流程 39 6.1.2 工作電極製備 40 6.1.3 循環伏安法(Cyclic Voltammetry;CV) 41 6.1.4 計時安培法(Chronoamperometry;CA) 42 6.2 電化學產物分析 42 6.2.1 傅立葉紅外線光譜儀 43 第七章 結果與討論 45 7.1 乙醇氧化反應電化學分析 45 7.1.1 乙醇溶液循環伏安電位圖分析 45 7.1.2 乙醇溶液計時安培法分析 47 7.1.3 不同體積的乙醇溶液循環伏安電位圖分析 48 7.1.4 乙醇氧化反應產物分析 51 第八章 乙醇氧化反應結論 58 8.1 乙醇氧化反應結論 58 8.2 乙醇氧化反應未來方向 58 參考資料 59

    [1] 卓胡誼., 許心怡. and 嵇建安.
    [2] M. Z. Jacobson, 2009, 56-67.
    [3] 張嘉修, 2009, 433, 32-35.
    [4] R. M. Navarro, M. A. Pen˜a and J. L. G. Fierro, Chem.Rev. 2007, 107, 3952-3991.
    [5] S.-C. Huang., C.-H. Lin. and J.-H. Wang., J. Phys. Chem. C 2010, 114, 9826-9834.
    [6] R. C. Catapan, A. A. M. Oliveira, Y. Chen and D. G. Vlachos, The Journal of Physical Chemistry C 2012, 116, 20281-20291.
    [7] P. Liu, J. A. Rodriguez, Y. Takahashi and K. Nakamura, Journal of Catalysis 2009, 262, 294-303.
    [8] J. L. C. Fajín, M. N. D. S. Cordeiro, F. Illas and J. R. B. Gomes, Journal of Catalysis 2010, 276, 92-100.
    [9] Hai-Yan Su, Ming-Mei Yang, Xin-He Bao and W.-X. Li, J. Phys. Chem. C 2008, 112.
    [10] 黃世昌, Master Thesis 2010.
    [11] A. A. Gokhale., J. A. Dumesic. and M. Mavrikakis., J. AM. CHEM. SOC. 130, 1402-1414.
    [12] Gui-ChangWang. and J. Nakamura., J. Phys. Chem. Lett. 2010, 1, 3053-3057.
    [13] J. A. Rodriguez, P. Liu, J. Hrbek, J. Evans and M. Perez, Angew Chem Int Ed Engl 2007, 46, 1329-1332.
    [14] R. P. S. Fartaria, F. F. M. Freitas and F. M. S. Silva Fernandes, International Journal of Quantum Chemistry 2007, 107, 2169-2177.
    [15] S. D. Senanayake., D. Stacchiola., P. Liu., C. B. Mullins., J. Hrbek. and J. A. Rodriguez., J. Phys. Chem. C 2009, 13, 19536–19544.
    [16] Gui-ChangWang. and J. Nakamura., J. Phys. Chem. Lett. 2010, 1, 3053-3057.
    [17] L. C. Grabow., A. A. Gokhale., S. T. Evans., J. A. Dumesic. and M. Mavrikakis., J. Phys. Chem. C 112, 4608-4617.
    [18] C. Zhang. and P. J. D. Lindan., JOURNAL OF CHEMICAL PHYSICS 2004, 121, 3811-3815.
    [19] S. C. Ammal and A. Heyden, ACS Catalysis 2014, 4, 3654-3662.
    [20] J. Vecchietti, A. Bonivardi, W. Xu, D. Stacchiola, J. J. Delgado, M. Calatayud and S. E. Collins, ACS Catalysis 2014, 4, 2088-2096.
    [21] W. Song and E. J. M. Hensen, ACS Catalysis 2014, 4, 1885-1892.
    [22] J. A. RODRIGUEZ., S. D. SENANAYAKE., D. STACCHIOLA., P. LIU. and J. HRBEK., 2014, 47, 773-782.
    [23] N. G. Petrik and G. A. Kimmel, The Journal of Physical Chemistry C 2015, 119, 23059-23067.
    [24] A. A. Phatak., W. N. Delgass., F. H. Ribeiro. and W. F. Schneider., J. Phys. Chem. C 2009, 113, 7269–7276.
    [25] S. Lin, J. Ma, L. Zhou, C. Huang, D. Xie and H. Guo, The Journal of Physical Chemistry C 2013, 117, 451-459.
    [26] P. A. Christensen and S. W. M. Jones, The Journal of Physical Chemistry C 2014, 118, 29760-29769.
    [27] Z.-T. Chien, Master Thesis 2015.
    [28] J. Mann., N. Yao. and A. B. Bocarsly., Langmuir 2006, 22, 10432-10436.
    [29] G. Cui., S. Song., P. K. Shen., A. Kowal. and C. Bianchini., J. Phys. Chem. C 2009, 113, 15639-15642.
    [30] X. Fang, L. Wang, P. K. Shen, G. Cui and C. Bianchini, Journal of Power Sources 2010, 195, 1375-1378.
    [31] Z.-Y. Zhou, Q. Wang, J.-L. Lin, N. Tian and S.-G. Sun, Electrochimica Acta 2010, 55, 7995-7999.
    [32] A. Bach Delpeuch, F. Maillard, M. Chatenet, P. Soudant and C. Cremers, Applied Catalysis B: Environmental 2016, 181, 672-680.
    [33] M. Li, W. P. Zhou, N. S. Marinkovic, K. Sasaki and R. R. Adzic, Electrochimica Acta 2013, 104, 454-461.
    [34] E. A. Batista, G. R. P. Malpass, A. J. Motheo and T. Iwasita, Journal of Electroanalytical Chemistry 2004, 571, 273-282.
    [35] U. Martinez, A. Serov, M. Padilla and P. Atanassov, ChemSusChem 2014, 7, 2351-2357.
    [36] J. Datta, A. Dutta and S. Mukherjee, The Journal of Physical Chemistry C 2011, 115, 15324-15334.

    下載圖示
    QR CODE